- Source: Amari distance
The Amari distance, also known as Amari index and Amari metric is a similarity measure between two invertible matrices, useful for checking for convergence in independent component analysis algorithms and for comparing solutions. It is named after Japanese information theorist Shun'ichi Amari and was originally introduced as a performance index for blind source separation.
For two invertible matrices
A
,
B
∈
R
n
×
n
{\displaystyle A,B\in \mathbb {R} ^{n\times n}}
, it is defined as:
d
(
A
,
B
)
=
∑
i
=
1
n
(
∑
j
=
1
n
|
p
i
j
|
max
k
|
p
i
k
|
−
1
)
+
∑
j
=
1
n
(
∑
i
=
1
n
|
p
i
j
|
max
k
|
p
k
j
|
−
1
)
,
P
=
A
−
1
B
{\displaystyle d(A,B)=\sum _{i=1}^{n}\left(\sum _{j=1}^{n}{\frac {|p_{ij}|}{\max _{k}|p_{ik}|}}-1\right)+\sum _{j=1}^{n}\left(\sum _{i=1}^{n}{\frac {|p_{ij}|}{\max _{k}|p_{kj}|}}-1\right),P=A^{-1}B}
It is non-negative and cancels if and only if
A
−
1
B
{\displaystyle A^{-1}B}
is a scale and permutation matrix, i.e. the product of a diagonal matrix and a permutation matrix. The Amari distance is invariant to permutation and scaling of the columns of
A
{\displaystyle A}
and
B
{\displaystyle B}
.
References
Kata Kunci Pencarian:
- Dukungan dalam pemilihan umum Presiden Indonesia 2024
- Mumbai
- Pencarian string samar
- Sandakan
- Partai Islam Se-Malaysia
- Kiran Kumar
- Penghancuran al-Baqi
- Shrimad Ramayan
- Daftar film India berkeuntungan tertinggi
- Amari distance
- Statistical distance
- Shun'ichi Amari
- Kullback–Leibler divergence
- Information geometry
- Divergence (statistics)
- Children of Blood and Bone
- Pharah
- The Amazing Race Canada 10
- F-divergence