• Source: PLK1
  • Serine/threonine-protein kinase PLK1, also known as polo-like kinase 1 (PLK-1) or serine/threonine-protein kinase 13 (STPK13), is an enzyme that in humans is encoded by the PLK1 (polo-like kinase 1) gene.


    Structure


    PLK1 consists of 603 amino acids and is 66kDa. In addition to the N-terminus kinase domain, there are two conserved polo-box regions of 30 amino acids at the C-terminus. Kinase activity is regulated at least in part, by the polo-boxes that are functionally important for both auto-inhibition and subcellular localization.


    Localization


    During interphase, PLK1 localizes to centrosomes. In early mitosis, it associates with mitotic spindle poles. A recombinant GFP-PLK1 protein localizes to centromere/kinetochore region, suggesting a possible role for chromosome separation.


    Cell cycle regulation


    Plk1 is an early trigger for G2/M transition. Plk1 supports the functional maturation of the centrosome in late G2/early prophase and establishment of the bipolar spindle. Plk1 phosphorylates and activates cdc25C, a phosphatase that dephosphorylates and activates the cyclinB/cdc2 complex. Plk phosphorylates and activates components of the anaphase-promoting complex (APC). The APC, which is activated by Fizzy-Cdc20 family proteins, is a cell cycle ubiquitin-protein ligase (E3) that degrades mitotic cyclins, chromosomal proteins that maintain cohesion of sister chromatids, and anaphase inhibitors. Abnormal spindle (Asp), a Polo kinase substrate, is a microtubule-associated protein essential for correct behavior of spindle poles and M-phase microtubules. Plk1 localizes to the central region of the spindle in late mitosis and associates with kinesin-like protein CHO1/MKLP1. The homologous motor protein in Drosophila is the pavarotti gene product (PAR). Studies have shown that the loss of PLK1 expression can induce pro-apoptotic pathways and inhibit growth.


    = Meiosis

    =
    Based on yeast and murine studies of meiosis, human PLK1 may also have a regulatory function in meiosis. S. cerevisiae polo kinase CDC5 is required to phosphorylate and remove meiotic cohesion during the first cell division. In CDC5 depleted cells, kinetochores are bioriented during meiosis I, and Mam1, a protein essential for coorientation, fails to associate with kinetochores. CDC5 is believed to have roles in sister-kinetochore coorientation and chromosome segregation during meiosis I.
    PLK1 functions during meiotic centrosome biogenesis in mouse spermatocytes, thus facilitating accurate chromosome segregation during spermatogenesis.


    Role in tumorigenesis


    Plk1 is considered a proto-oncogene, whose overexpression is often observed in tumor cells. Aneuploidy and tumorigenesis can also result from centrosome abnormality, particularly centrosome amplification defects. Centrosome duplication and maturation regulated by Plk1 occurs from late S phase to prophase. Abnormal centrosome amplification may lead to multipolar spindles and results in unequal segregation of chromosomes. Plk1 overexpression also increases the centrosome size and/or centrosome number, which will also lead to improper segregation of chromosomes, aneuploidy, and tumorigenesis.
    Oncogenic properties of PLK1 are believed to be due to its role in driving cell cycle progression. Supporting evidence comes from the overexpression studies of PLK1 in NIH3T3 cell line. These cells become capable of forming foci and growing in soft agar and more importantly, these cells can form tumors in nude mice due to PLK1 overexpression.
    PLK1 has also been linked to known pathways that are altered during the neoplastic transformation. Retinoblastoma tumor suppressor (RB) pathway activation results in the repression of PLK1 promoter in a SWI/SNF chromatin remodeling complex dependent manner. In case of RB inactivation, PLK1 expression seems to be deregulated. This new finding suggests that PLK1 may be a target of the retinoblastoma tumor suppressor (RB) pathway.
    Moreover, PLK1 seems to be involved in the tumor suppressor p53 related pathways. Evidence suggests that PLK1 can inhibit transactivation and pro-apoptotic functions of p53 function by physical interaction and phosphorylation.


    Clinical significance


    PLK1 is being studied as a target for cancer drugs. Many colon and lung cancers are caused by K-RAS mutations. These cancers are dependent on PLK1.
    When PLK1 expression was silenced with RNA interference in cell culture, K-RAS cells were selectively killed, without harming normal cells.
    PLK1 inhibitor volasertib is being evaluated in clinical trials for use in acute myeloid leukemia (AML). A combination of PLK1 and EGFR inhibition overcomes T790M-mediated drug resistance in vitro and in vivo in non-small cell lung cancer (NSCLC). In HNSCC mutations of the AJUBA mediate sensitivity to treatment with cell-cycle inhibitors including Plk1 inhibitor volasertib. In mesenchymal NSCLC cells, cMet phosphorylation is regulated by Plk1‐mediated vimentin phosphorylation via β1‐integrin. The combination of cMet and Plk1 inhibition led to significant tumor regression in NSCLC in vivo models treated with clinically relevant drugs.
    Rigosertib is an experimental RAS/PI3K/PLK1 inhibitor.


    Interactions


    PLK1 has been shown to interact with:

    Structural analysis has been used to explain the broad specificity of PLK1.


    See also


    Polo-like kinases, the gene family that PLK1 belongs to


    References

Kata Kunci Pencarian: