- Source: Schmidt number
In fluid dynamics, the Schmidt number (denoted Sc) of a fluid is a dimensionless number defined as the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity, and it is used to characterize fluid flows in which there are simultaneous momentum and mass diffusion convection processes. It was named after German engineer Ernst Heinrich Wilhelm Schmidt (1892–1975).
The Schmidt number is the ratio of the shear component for diffusivity (viscosity divided by density) to the diffusivity for mass transfer D. It physically relates the relative thickness of the hydrodynamic layer and mass-transfer boundary layer.
It is defined as:
S
c
=
ν
D
=
μ
ρ
D
=
viscous diffusion rate
molecular (mass) diffusion rate
=
P
e
R
e
{\displaystyle \mathrm {Sc} ={\frac {\nu }{D}}={\frac {\mu }{\rho D}}={\frac {\mbox{viscous diffusion rate}}{\mbox{molecular (mass) diffusion rate}}}={\frac {\mathrm {Pe} }{\mathrm {Re} }}}
where (in SI units):
ν
=
μ
ρ
{\displaystyle \nu ={\tfrac {\mu }{\rho }}}
is the kinematic viscosity (m2/s)
D is the mass diffusivity (m2/s).
μ is the dynamic viscosity of the fluid (Pa·s = N·s/m2 = kg/m·s)
ρ is the density of the fluid (kg/m3)
Pe is the Peclet Number
Re is the Reynolds Number.
The heat transfer analog of the Schmidt number is the Prandtl number (Pr). The ratio of thermal diffusivity to mass diffusivity is the Lewis number (Le).
Turbulent Schmidt Number
The turbulent Schmidt number is commonly used in turbulence research and is defined as:
S
c
t
=
ν
t
K
{\displaystyle \mathrm {Sc} _{\mathrm {t} }={\frac {\nu _{\mathrm {t} }}{K}}}
where:
ν
t
{\displaystyle \nu _{\mathrm {t} }}
is the eddy viscosity in units of (m2/s)
K
{\displaystyle K}
is the eddy diffusivity (m2/s).
The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar). It is related to the turbulent Prandtl number, which is concerned with turbulent heat transfer rather than turbulent mass transfer. It is useful for solving the mass transfer problem of turbulent boundary layer flows. The simplest model for Sct is the Reynolds analogy, which yields a turbulent Schmidt number of 1. From experimental data and CFD simulations, Sct ranges from 0.2 to 6.
Stirling engines
For Stirling engines, the Schmidt number is related to the specific power.
Gustav Schmidt of the German Polytechnic Institute of Prague published an analysis in 1871 for the now-famous closed-form solution for an idealized isothermal Stirling engine model.
S
c
=
∑
|
Q
|
p
¯
V
s
w
{\displaystyle \mathrm {Sc} ={\frac {\sum {\left|{Q}\right|}}{{\bar {p}}V_{sw}}}}
where:
S
c
{\displaystyle \mathrm {Sc} }
is the Schmidt number
Q
{\displaystyle Q}
is the heat transferred into the working fluid
p
¯
{\displaystyle {\bar {p}}}
is the mean pressure of the working fluid
V
s
w
{\displaystyle V_{sw}}
is the volume swept by the piston.
References
Kata Kunci Pencarian:
- Rudolf Steiner
- Bahasa Inggris
- Jürgen Neukirch
- Malaysia Airlines Penerbangan 370
- Android (sistem operasi)
- Manusia
- Meta Platforms
- Psikokinesis
- Schmidt number
- Prandtl number
- Schmidt
- Péclet number
- Sherwood number
- Ernst Schmidt (disambiguation)
- Gram–Schmidt process
- Graetz number
- Mike Schmidt
- Eric Schmidt
- 1
- 2
No More Posts Available.
No more pages to load.