- Raksasa gas
- Planet
- Tata Surya
- Planet pengembara
- Kabupaten Bojonegoro
- Sukanto Tanoto
- Kawah gas Darvaza
- Daerah Khusus Ibukota Jakarta
- HD 100546 b
- Neon
- Gas giant
- Ice giant
- Giant planet
- Sudarsky's gas giant classification
- Giant oil and gas fields
- Yavin 4
- Deuterium
- Five-planet Nice model
- Nebular hypothesis
- List of planet types
- Is Jupiter made entirely from gas? | Science Questions
- What's at the centre of a gas giant? | Science Questions
- Could I land on a gassy planet like Jupiter? | Science Questions
- What would happen if one of the "gas giant" planets exploded?
- Can I land on gassy planets like Jupiter? - Naked Scientists
- Could a gas giant turn into a star? | Naked Science Forum
- How many nukes would it take to blow up Jupiter?
- Why do the outer gas giant planets reflect light?
- What would happen if a rogue planet fell into the sun?
- Why don't Saturn's rings aggregate to form moons?
The Hangover Part III (2013)
The Hangover (2009)
The Family Plan (2023)
Jumanji (1995)
The Water Horse (2007)
Ghostbusters II (1989)
Godzilla (2014)
Gas giant GudangMovies21 Rebahinxxi LK21
A gas giant is a giant planet composed mainly of hydrogen and helium. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" was originally synonymous with "giant planet". However, in the 1990s, it became known that Uranus and Neptune are really a distinct class of giant planets, being composed mainly of heavier volatile substances (which are referred to as "ices"). For this reason, Uranus and Neptune are now often classified in the separate category of ice giants.
Jupiter and Saturn consist mostly of elements such as hydrogen and helium, with heavier elements making up between 3 and 13 percent of their mass. They are thought to consist of an outer layer of compressed molecular hydrogen surrounding a layer of liquid metallic hydrogen, with probably a molten rocky core inside. The outermost portion of their hydrogen atmosphere contains many layers of visible clouds that are mostly composed of water (despite earlier consensus that there was no water anywhere in the Solar System besides Earth) and ammonia. The layer of metallic hydrogen located in the mid-interior makes up the bulk of every gas giant and is referred to as "metallic" because the very large atmospheric pressure turns hydrogen into an electrical conductor. The gas giants' cores are thought to consist of heavier elements at such high temperatures (20,000 K [19,700 °C; 35,500 °F]) and pressures that their properties are not yet completely understood. The placement of the solar system's gas giants can be explained by the grand tack hypothesis.
The defining differences between a very low-mass brown dwarf (which can have a mass as low as roughly 13 times that of Jupiter) and a gas giant are debated. One school of thought is based on formation; the other, on the physics of the interior. Part of the debate concerns whether brown dwarfs must, by definition, have experienced nuclear fusion at some point in their history.
Terminology
The term gas giant was coined in 1952 by the science fiction writer James Blish and was originally used to refer to all giant planets. It is, arguably, something of a misnomer because throughout most of the volume of all giant planets, the pressure is so high that matter is not in gaseous form. Other than solids in the core and the upper layers of the atmosphere, all matter is above the critical point, where there is no distinction between liquids and gases. The term has nevertheless caught on, because planetary scientists typically use "rock", "gas", and "ice" as shorthands for classes of elements and compounds commonly found as planetary constituents, irrespective of what phase the matter may appear in. In the outer Solar System, hydrogen and helium are referred to as "gases"; water, methane, and ammonia as "ices"; and silicates and metals as "rocks". In this terminology, since Uranus and Neptune are primarily composed of ices, not gas, they are more commonly called ice giants and distinct from the gas giants.
Classification
Theoretically, gas giants can be divided into five distinct classes according to their modeled physical atmospheric properties, and hence their appearance: ammonia clouds (I), water clouds (II), cloudless (III), alkali-metal clouds (IV), and silicate clouds (V). Jupiter and Saturn are both class I. Hot Jupiters are class IV or V.
Extrasolar
= Cold gas giants
=A cold hydrogen-rich gas giant more massive than Jupiter but less than about 500 ME (1.6 MJ) will only be slightly larger in volume than Jupiter. For masses above 500 ME, gravity will cause the planet to shrink (see degenerate matter).
Kelvin–Helmholtz heating can cause a gas giant to radiate more energy than it receives from its host star.
= Gas dwarfs
=Although the words "gas" and "giant" are often combined, hydrogen planets need not be as large as the familiar gas giants from the Solar System. However, smaller gas planets and planets closer to their star will lose atmospheric mass more quickly via hydrodynamic escape than larger planets and planets farther out.
A gas dwarf could be defined as a planet with a rocky core that has accumulated a thick envelope of hydrogen, helium and other volatiles, having as result a total radius between 1.7 and 3.9 Earth-radii.
The smallest known extrasolar planet that is likely a "gas planet" is Kepler-138d, which has the same mass as Earth but is 60% larger and therefore has a density that indicates a thick gas envelope.
A low-mass gas planet can still have a radius resembling that of a gas giant if it has the right temperature.
Precipitation and meteorological phenomena
= Jovian weather
=Heat that is funneled upward by local storms is a major driver of the weather on gas giants. Much, if not all, of the deep heat escaping the interior flows up through towering thunderstorms. These disturbances develop into small eddies that eventually form storms such as the Great Red Spot on Jupiter. On Earth and Jupiter, lightning and the hydrologic cycle are intimately linked together to create intense thunderstorms. During a terrestrial thunderstorm, condensation releases heat that pushes rising air upward. This "moist convection" engine can segregate electrical charges into different parts of a cloud; the reuniting of those charges is lightning. Therefore, we can use lightning to signal to us where convection is happening. Although Jupiter has no ocean or wet ground, moist convection seems to function similarly compared to Earth.
= Jupiter's Red Spot
=The Great Red Spot (GRS) is a high-pressure system located in Jupiter's southern hemisphere. The GRS is a powerful anticyclone, swirling at about 430 to 680 kilometers per hour counterclockwise around the center. The Spot has become known for its ferocity, even feeding on smaller Jovian storms. Tholins are brown organic compounds found within the surface of various planets that are formed by exposure to UV irradiation. The tholins that exist on Jupiter's surface get sucked up into the atmosphere by storms and circulation; it is hypothesized that those tholins that become ejected from the regolith get stuck in Jupiter's GRS, causing it to be red.
= Helium rain on Saturn and Jupiter
=Condensation of helium creates liquid helium rain on gas giants. On Saturn, this helium condensation occurs at certain pressures and temperatures when helium does not mix in with the liquid metallic hydrogen present on the planet. Regions on Saturn where helium is insoluble allow the denser helium to form droplets and act as a source of energy, both through the release of latent heat and by descending deeper into the center of the planet. This phase separation leads to helium droplets that fall as rain through the liquid metallic hydrogen until they reach a warmer region where they dissolve in the hydrogen. Since Jupiter and Saturn have different total masses, the thermodynamic conditions in the planetary interior could be such that this condensation process is more prevalent in Saturn than in Jupiter. Helium condensation could be responsible for Saturn's excess luminosity as well as the helium depletion in the atmosphere of both Jupiter and Saturn.
See also
List of gravitationally rounded objects of the Solar System
List of planet types
Hot Jupiter
Ice giant
Kepler-1704b
Brown dwarf
References
Kata Kunci Pencarian:

10+ Great Gas Giant Photos · Pexels · Free Stock Photos

Gas Giant on Behance

Gas Giant | CGTrader

Gas Giant « MyConfinedSpace

Gas Giant Free Photo Download | FreeImages

Gas Giant by aeremita on DeviantArt

Gas Giant - NASA Science

Gas Giant - NASA Science

Gas Giant - NASA Science

Gas Giant : Free Music : Free Audio : Free Download, Borrow and ...

Gas Giant 2 Free Photo Download | FreeImages

Gas Giant | Traveller RPG Blog | The Zhodani Base
gas giant
Daftar Isi
Is Jupiter made entirely from gas? | Science Questions
Jun 13, 2017 · The gas is molecular for about 1,000 kilometres in but after that it has to carry the weight of all the overlying layers of gas and it starts to get high temperature, high pressure and becomes as incompressible as a liquid.
What's at the centre of a gas giant? | Science Questions
May 15, 2018 · Matt - A gas giant is a big gassy planet. If you think of something like Jupiter or Saturn, so instead of what we call the terrestrial or rocky planets like Earth, they’re much bigger and they're not rocky, they’re gassy. The centre of them - they’re not 100% gas. They do have various weird and wonderful things in their centre.
Could I land on a gassy planet like Jupiter? | Science Questions
Jun 2, 2015 · Marc - In contrast to our planet, gas planets are composed mostly of gas. They're also gigantic and the weight of all that gas is tremendous. For example, Jupiter is mostly hydrogen and it is enormous, 11 times the diameter of Earth and over 300 times the mass. It may have a rocky core that's more than 10 times the mass of Earth.
What would happen if one of the "gas giant" planets exploded?
Mar 29, 2010 · What would happen if one of the "gas giant" planets exploded? « Reply #4 on: 02/04/2010 10:38:19 » Stars do it all the time by fusion, although I wouldn't worry about jupiter as it has no where near the sufficient mass to collapse into a protostar and hence ingnite and explode via fusion.
Can I land on gassy planets like Jupiter? - Naked Scientists
Jun 1, 2015 · This week we tackle Allana's question: If we were to travel to gas giant Jupiter, would we sink to the core? Or float straight on throu
Could a gas giant turn into a star? | Naked Science Forum
Sep 18, 2008 · Could a gas giant turn into a star? « Reply #3 on: 18/09/2008 13:30:42 » Neil, just from my memory of 2010, I think the monoliths were "Von Neumann machines" that did some sort of job and were capable of self replication.
How many nukes would it take to blow up Jupiter?
Dec 15, 2023 · The maths behind nuclear armageddon on a the gas giant... 15 December 2023.
Why do the outer gas giant planets reflect light?
Jul 19, 2013 · Why does the outer gas planets reflect light at nighttime, also gas fusions or what. They talk about multiple universes, is it possible for them to collide or are they all moving outwards. What do you think?
What would happen if a rogue planet fell into the sun?
May 4, 2013 · What would happen if one of the "gas giant" planets exploded? Started by greenslime Board Physics, Astronomy & Cosmology. Replies: 5 Views: 19758 20/09/2024 13:00:15 by Pseudoscience-is-malarkey: What would happen if salt water and fresh water swapped? Started by Paul Chapman Board The Environment. Replies: 1 Views: 9350 …
Why don't Saturn's rings aggregate to form moons?
Aug 12, 2012 · And the closer that body is to Saturn, the stronger those tides are, and those rings are really quite close in to a very large gas giant planet and so, they feel incredibly strong tides. And that means anything that tries to clump together where those rings are, would immediately be pulled apart by those tidal forces.