- Source: Arctic methane emissions
Arctic methane emissions contribute to a rise in methane concentrations in the atmosphere. Whilst the Arctic region is one of many natural sources of the greenhouse gas methane, there is nowadays also a human component to this due to the effects of climate change. In the Arctic, the main human-influenced sources of methane are thawing permafrost, Arctic sea ice melting, clathrate breakdown and Greenland ice sheet melting. This methane release results in a positive climate change feedback (meaning one that amplifies warming), as methane is a powerful greenhouse gas. When permafrost thaws due to global warming, large amounts of organic material can become available for methanogenesis and may therefore be released as methane.
Since around 2018, there has been consistent increases in global levels of methane in the atmosphere, with the 2020 increase of 15.06 parts per billion breaking the previous record increase of 14.05 ppb set in 1991, and 2021 setting an even larger increase of 18.34 ppb. However, there is currently no evidence connecting the Arctic to this recent acceleration. In fact, a 2021 study indicated that the methane contributions from the Arctic were generally overestimated, while the contributions of tropical regions were underestimated.
Nevertheless, the Arctic's role in global methane trends is considered very likely to increase in the future. There is evidence for increasing methane emissions since 2004 from a Siberian permafrost site into the atmosphere linked to warming.
Mitigation of CO2 emissions by 2050 (i.e. reaching net zero emissions) is probably not enough to stop the future disappearance of summer Arctic Ocean ice cover. Mitigation of methane emissions is also necessary and this has to be carried out over an even shorter period of time. Such mitigation activities need to be carried out in three main sectors: oil and gas, waste and agriculture. Using available measures this could amount to global reductions of ca.180 Mt/yr or about 45% of the current (2021) emissions by 2030.
Observed values and processes
NOAA annual records for methane concentrations in the atmosphere have been updated since 1984. They show substantial growth during the 1980s, a slowdown in annual growth during the 1990s, a plateau (including some years of declining atmospheric concentrations) in the early 2000s and another consistent increase beginning in 2007. Since around 2018, there has been consistent annual increases in global levels of methane, with the 2020 increase of 15.06 parts per billion breaking the previous record increase of 14.05 ppb set in 1991, and 2021 setting an even larger increase of 18.34 ppb.
Due to the relatively short lifetime of atmospheric methane (7-12 years compared to 100s of years for CO2) its global trends are more complex than those of carbon dioxide.
These trends alarm climate scientists, with some suggesting that they represent a climate change feedback increasing natural methane emissions well beyond their preindustrial levels. However, there is currently no evidence connecting the Arctic to this recent acceleration. In fact, a 2021 study indicated that the role of the Arctic was typically overestimated in global methane accounting, while the role of tropical regions was consistently underestimated. The study suggested that tropical wetland methane emissions were the culprit behind the recent growth trend, and this hypothesis was reinforced by a 2022 paper connecting tropical terrestrial emissions to 80% of the global atmospheric methane trends between 2010 and 2019.
Nevertheless, the Arctic's role in global methane trends is considered very likely to increase in the future. There is evidence for increasing methane emissions since 2004 from a Siberian permafrost site into the atmosphere linked to warming.
Radiocarbon dating of trace methane in lake bubbles and soil organic carbon concluded that 0.2 to 2.5 Pg of permafrost carbon has been released as methane and carbon dioxide over the last 60 years. The 2020 heat wave may have released significant methane from carbonate deposits in Siberian permafrost.
Methane emissions by the permafrost carbon feedback—amplification of surface warming due to enhanced radiative forcing by carbon release from permafrost—could contribute an estimated 205 Gt of carbon emissions, leading up to 0.5 °C (0.9 °F) of additional warming by the end of the 21st century. However, recent research based on the carbon isotopic composition of atmospheric methane trapped in bubbles in Antarctic ice suggests that methane emissions from permafrost and methane hydrates were minor during the last deglaciation, suggesting that future permafrost methane emissions may be lower than previously estimated.
= Comparison of Arctic and Antarctic atmosphere measurements
=Atmospheric methane concentrations are 8–10% higher in the Arctic than in the Antarctic atmosphere. During cold glacier epochs, this gradient decreases to insignificant levels. Land ecosystems are thought to be the main sources of this asymmetry, although it has been suggested in 2007 that "the role of the Arctic Ocean is significantly underestimated." Soil temperature and moisture levels are important variables in soil methane fluxes in tundra environments.
Sources of methane in the Arctic
Large quantities of methane are stored in the Arctic in natural gas deposits, permafrost, and as undersea clathrates. Permafrost and clathrates degrade on warming, thus large releases of methane from these sources may arise as a result of global warming. Other sources of methane include submarine taliks, river transport, ice complex retreat, submarine permafrost and decaying gas hydrate deposits. Permafrost contains almost twice as much carbon as the atmosphere, with ~20 Gt of permafrost-associated methane trapped in methane clathrates. Permafrost thaw results in the formation of thermokarst lakes in ice-rich yedoma deposits. Methane frozen in permafrost is slowly released as permafrost thaws.
= Thawing permafrost
== Arctic sea ice melting
== Clathrate breakdown
== Greenland ice sheet melting
=A 2014 study found evidence for methane cycling below the ice sheet of the Russell Glacier, based on subglacial drainage samples which were dominated by Pseudomonadota bacteria. During the study, the most widespread surface melt on record for the past 120 years was observed in Greenland; on 12 July 2012, unfrozen water was present on almost the entire ice sheet surface (98.6%). The findings indicate that methanotrophs could serve as a biological methane sink in the subglacial ecosystem, and the region was, at least during the sample time, a source of atmospheric methane. Scaled dissolved methane flux during the four months of the summer melt season for the Russell Glacier catchment area (1200 km2) was estimated at 990 tonnes CH4. Because this catchment area is representative of similar Greenland outlet glaciers, the researchers concluded that the Greenland Ice Sheet may represent a significant global methane source.
A study in 2016 concluded that methane clathrates may exist below Greenland's and Antarctica's ice sheets, based on past evidence.
Reducing methane emissions
More than half of global methane emissions originate from human activities across three main sectors: fossil fuels (35% of human-caused emissions), waste (20%), and agriculture (40%). Within the fossil fuel sector, oil and gas extraction, processing, and distribution contribute 23%, while coal mining accounts for 12% of these emissions. In the waste sector, landfills and wastewater comprise about 20% of global anthropogenic emissions. In agriculture, livestock emissions from manure and enteric fermentation make up roughly 32%, and rice cultivation contributes 8% of global anthropogenic emissions. Mitigation using available measures could reduce these methane emissions by about 180 Mt/yr or about 45% by 2030.
Mitigation of CO2 emissions by 2050 (i.e. reaching net zero emissions) is probably not enough to stop the future disappearance of summer Arctic Ocean ice cover. Mitigation of methane emissions is also necessary and this has to be carried out over an even shorter period of time.
= Flaring methane from oil and gas operations
=ARPA-E has funded a research project from 2021-2023 to develop a "smart micro-flare fleet" to burn off methane emissions at remote locations.
A 2012 review article stated that most existing technologies "operate on confined gas streams of 0.1% methane", and were most suitable for areas where methane is emitted in pockets.
If Arctic oil and gas operations use Best Available Technology (BAT) and Best Environmental Practices (BEP) in petroleum gas flaring, this can result in significant methane emissions reductions, according to the Arctic Council.
See also
Arctic dipole anomaly – Climate pattern
Climate change in Antarctica – Impacts of climate change on Antarctica
Effects of climate change
Global Carbon Project – Global research project on greenhouse gas emissions
Global Methane Initiative – International partnership to reduce methane emissions
Peat – Accumulation of partially decayed vegetation
References
External links
Arctic permafrost is thawing fast. That affects us all. National Geographic, 2019
Why the Arctic is smouldering, BBC Future, by Zoe Cormier, 2019
Kata Kunci Pencarian:
- Arctic methane emissions
- Methane emissions
- Methane
- Climate change in the Arctic
- Atmospheric methane
- Climate change
- Clathrate gun hypothesis
- Greenhouse gas emissions
- Arctic shipping routes
- Methane clathrate