- Source: Big q-Jacobi polynomials
In mathematics, the big q-Jacobi polynomials Pn(x;a,b,c;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme.
Definition
The polynomials are given in terms of basic hypergeometric functions by
P
n
(
x
;
a
,
b
,
c
;
q
)
=
3
ϕ
2
(
q
−
n
,
a
b
q
n
+
1
,
x
;
a
q
,
c
q
;
q
,
q
)
{\displaystyle \displaystyle P_{n}(x;a,b,c;q)={}_{3}\phi _{2}(q^{-n},abq^{n+1},x;aq,cq;q,q)}
References
Further reading
Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 96 (2nd ed.), Cambridge University Press, ISBN 978-0-521-83357-8, MR 2128719
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), "9.8 Jacobi", Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, pp. 216–221, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096 gives a detailed list of properties.
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Chapter 18: Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
Kata Kunci Pencarian:
- Big q-Jacobi polynomials
- Jacobi polynomials
- Q-Jacobi polynomials
- List of q-analogs
- List of things named after Carl Gustav Jacob Jacobi
- Orthogonal polynomials
- Legendre polynomials
- Chebyshev polynomials
- Askey scheme
- Faulhaber's formula