- Source: Bochner identity
In mathematics — specifically, differential geometry — the Bochner identity is an identity concerning harmonic maps between Riemannian manifolds. The identity is named after the American mathematician Salomon Bochner.
Statement of the result
Let M and N be Riemannian manifolds and let u : M → N be a harmonic map. Let du denote the derivative (pushforward) of u, ∇ the gradient, Δ the Laplace–Beltrami operator, RiemN the Riemann curvature tensor on N and RicM the Ricci curvature tensor on M. Then
1
2
Δ
(
|
∇
u
|
2
)
=
|
∇
(
d
u
)
|
2
+
⟨
R
i
c
M
∇
u
,
∇
u
⟩
−
⟨
R
i
e
m
N
(
u
)
(
∇
u
,
∇
u
)
∇
u
,
∇
u
⟩
.
{\displaystyle {\frac {1}{2}}\Delta {\big (}|\nabla u|^{2}{\big )}={\big |}\nabla (\mathrm {d} u){\big |}^{2}+{\big \langle }\mathrm {Ric} _{M}\nabla u,\nabla u{\big \rangle }-{\big \langle }\mathrm {Riem} _{N}(u)(\nabla u,\nabla u)\nabla u,\nabla u{\big \rangle }.}
See also
Bochner's formula
References
Eells, J; Lemaire, L. (1978). "A report on harmonic maps". Bull. London Math. Soc. 10 (1): 1–68. doi:10.1112/blms/10.1.1. MR 0495450.
External links
Weisstein, Eric W. "Bochner identity". MathWorld.
Kata Kunci Pencarian:
- Daftar film Amerika tahun 1988
- Bochner identity
- Salomon Bochner
- Bochner–Kodaira–Nakano identity
- Bochner's formula
- Weitzenböck identity
- Bochner's theorem
- Bochner–Riesz mean
- Bochner's theorem (Riemannian geometry)
- Wald's equation
- Ambiguity tolerance–intolerance