- Source: Borel fixed-point theorem
In mathematics, the Borel fixed-point theorem is a fixed-point theorem in algebraic geometry generalizing the Lie–Kolchin theorem. The result was proved by Armand Borel (1956).
Statement
If G is a connected, solvable, linear algebraic group acting regularly on a non-empty, complete algebraic variety V over an algebraically closed field k, then there is a G fixed-point of V.
A more general version of the theorem holds over a field k that is not necessarily algebraically closed. A solvable algebraic group G is split over k or k-split if G admits a composition series whose composition factors are isomorphic (over k) to the additive group
G
a
{\displaystyle \mathbb {G} _{a}}
or the multiplicative group
G
m
{\displaystyle \mathbb {G} _{m}}
. If G is a connected, k-split solvable algebraic group acting regularly on a complete variety V having a k-rational point, then there is a G fixed-point of V.
References
Borel, Armand (1956). "Groupes linéaires algébriques". Ann. Math. 2. 64 (1). Annals of Mathematics: 20–82. doi:10.2307/1969949. JSTOR 1969949. MR 0093006.
Borel, Armand (1991) [1969], Linear Algebraic Groups (2nd ed.), New York: Springer-Verlag, ISBN 0-387-97370-2, MR 1102012
External links
V.P. Platonov (2001) [1994], "Borel fixed-point theorem", Encyclopedia of Mathematics, EMS Press
Kata Kunci Pencarian:
- Borel fixed-point theorem
- Fixed-point theorem
- Lie–Kolchin theorem
- Brouwer fixed-point theorem
- List of theorems
- Armand Borel
- Linear algebraic group
- Infinite monkey theorem
- Raoul Bott
- Schröder–Bernstein theorem