- Source: Bundle of principal parts
In algebraic geometry, given a line bundle L on a smooth variety X, the bundle of n-th order principal parts of L is a vector bundle of rank
(
n
+
dim
(
X
)
n
)
{\displaystyle {\tbinom {n+{\text{dim}}(X)}{n}}}
that, roughly, parametrizes n-th order Taylor expansions of sections of L.
Precisely, let I be the ideal sheaf defining the diagonal embedding
X
↪
X
×
X
{\displaystyle X\hookrightarrow X\times X}
and
p
,
q
:
V
(
I
n
+
1
)
→
X
{\displaystyle p,q:V(I^{n+1})\to X}
the restrictions of projections
X
×
X
→
X
{\displaystyle X\times X\to X}
to
V
(
I
n
+
1
)
⊂
X
×
X
{\displaystyle V(I^{n+1})\subset X\times X}
. Then the bundle of n-th order principal parts is
P
n
(
L
)
=
p
∗
q
∗
L
.
{\displaystyle P^{n}(L)=p_{*}q^{*}L.}
Then
P
0
(
L
)
=
L
{\displaystyle P^{0}(L)=L}
and there is a natural exact sequence of vector bundles
0
→
S
y
m
n
(
Ω
X
)
⊗
L
→
P
n
(
L
)
→
P
n
−
1
(
L
)
→
0.
{\displaystyle 0\to \mathrm {Sym} ^{n}(\Omega _{X})\otimes L\to P^{n}(L)\to P^{n-1}(L)\to 0.}
where
Ω
X
{\displaystyle \Omega _{X}}
is the sheaf of differential one-forms on X.
See also
Linear system of divisors (bundles of principal parts can be used to study the oscillating behaviors of a linear system.)
Jet (mathematics) (a closely related notion)
References
Fulton, William (1998), Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., vol. 2 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-62046-4, MR 1644323
Appendix II of Exp II of Berthelot, Pierre; Alexandre Grothendieck; Luc Illusie, eds. (1971). Séminaire de Géométrie Algébrique du Bois Marie - 1966-67 - Théorie des intersections et théorème de Riemann-Roch - (SGA 6) (Lecture notes in mathematics 225) (in French). Berlin; New York: Springer-Verlag. xii+700. doi:10.1007/BFb0066283. ISBN 978-3-540-05647-8. MR 0354655.
Kata Kunci Pencarian:
- Bundle of principal parts
- Coherent sheaf
- Linear system of divisors
- Ehresmann connection
- Gauge theory (mathematics)
- Monopole
- Hopf fibration
- Principal–agent problem
- BRST quantization
- Nonabelian Hodge correspondence