- Source: Chazy equation
In mathematics, the Chazy equation is the differential equation
d
3
y
d
x
3
=
2
y
d
2
y
d
x
2
−
3
(
d
y
d
x
)
2
.
{\displaystyle {\frac {d^{3}y}{dx^{3}}}=2y{\frac {d^{2}y}{dx^{2}}}-3\left({\frac {dy}{dx}}\right)^{2}.}
It was introduced by Jean Chazy (1909, 1911) as an example of a third-order differential equation with a movable singularity that is a natural boundary for its solutions.
One solution is given by the Eisenstein series
E
2
(
τ
)
=
1
−
24
∑
σ
1
(
n
)
q
n
=
1
−
24
q
−
72
q
2
−
⋯
.
{\displaystyle E_{2}(\tau )=1-24\sum \sigma _{1}(n)q^{n}=1-24q-72q^{2}-\cdots .}
Acting on this solution by the group SL2 gives a 3-parameter family of solutions.
References
Chazy, J. (1909), "Sur les équations différentielles dont l'intégrale générale est uniforme et admet des singularités essentielles mobiles", C. R. Acad. Sci. Paris (149)
Chazy, J. (1911), "Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes", Acta Mathematica, 34: 317–385, doi:10.1007/BF02393131, hdl:2027/mdp.39015080126587
Clarkson, Peter A.; Olver, Peter J. (1996), "Symmetry and the Chazy equation", Journal of Differential Equations, 124 (1): 225–246, Bibcode:1996JDE...124..225C, doi:10.1006/jdeq.1996.0008, MR 1368067
Kata Kunci Pencarian:
- Chazy equation
- Chazy
- Jean Chazy
- Painlevé transcendents
- Kerr metric
- Almost holomorphic modular form
- List of contributors to general relativity
- Poincaré and the Three-Body Problem
- Pierre Fatou
- Peccot Lectures