- Source: Circle criterion
- Filsafat ilmu
- Kino Video
- Carl Gustav Hempel
- El espíritu de la colmena
- Rome, Open City
- Paris, Texas (film)
- Trouble in Paradise (film)
- Teater Vivian Beaumont
- Miracle in Milan
- Kudeta Guinea 2021
- Circle criterion
- Nyquist stability criterion
- Stability criterion
- Popov criterion
- Nonlinear control
- Von Mises yield criterion
- List of circle topics
- Jury stability criterion
- Pole of inaccessibility
- Circle of confusion
In nonlinear control and stability theory, the circle criterion is a stability criterion for nonlinear time-varying systems. It can be viewed as a generalization of the Nyquist stability criterion for linear time-invariant (LTI) systems.
Overview
Consider a linear system subject to non-linear feedback, i.e., a nonlinear element
φ
(
v
,
t
)
{\displaystyle \varphi (v,t)}
is present in the feedback loop. Assume that the element satisfies a sector condition
[
μ
1
,
μ
2
]
{\displaystyle [\mu _{1},\mu _{2}]}
, and (to keep things simple) that the open loop system is stable. Then the closed loop system is globally asymptotically stable if the Nyquist locus does not penetrate the circle having as diameter the segment
[
−
1
/
μ
1
,
−
1
/
μ
2
]
{\displaystyle [-1/\mu _{1},-1/\mu _{2}]}
located on the x-axis.
General description
Consider the nonlinear system
x
˙
=
A
x
+
B
w
,
{\displaystyle {\dot {\mathbf {x} }}=\mathbf {Ax} +\mathbf {Bw} ,}
v
=
C
x
,
{\displaystyle \mathbf {v} =\mathbf {Cx} ,}
w
=
φ
(
v
,
t
)
.
{\displaystyle \mathbf {w} =\varphi (v,t).}
Suppose that
μ
1
v
≤
φ
(
v
,
t
)
≤
μ
2
v
,
∀
v
,
t
{\displaystyle \mu _{1}v\leq \varphi (v,t)\leq \mu _{2}v,\ \forall v,t}
det
(
i
ω
I
n
−
A
)
≠
0
,
∀
ω
∈
R
−
1
and
∃
μ
0
∈
[
μ
1
,
μ
2
]
:
A
+
μ
0
B
C
{\displaystyle \det(i\omega I_{n}-A)\neq 0,\ \forall \omega \in R^{-1}{\text{ and }}\exists \mu _{0}\in [\mu _{1},\mu _{2}]\,:\,A+\mu _{0}BC}
is stable
ℜ
[
(
μ
2
C
(
i
ω
I
n
−
A
)
−
1
B
−
1
)
(
1
−
μ
1
C
(
i
ω
I
n
−
A
)
−
1
B
)
]
<
0
∀
ω
∈
R
−
1
.
{\displaystyle \Re \left[(\mu _{2}C(i\omega I_{n}-A)^{-1}B-1)(1-\mu _{1}C(i\omega I_{n}-A)^{-1}B)\right]<0\ \forall \omega \in R^{-1}.}
Then
∃
c
>
0
,
δ
>
0
{\displaystyle \exists c>0,\delta >0}
such that for any solution of the system, the following relation holds:
|
x
(
t
)
|
≤
c
e
−
δ
t
|
x
(
0
)
|
,
∀
t
≥
0.
{\displaystyle |x(t)|\leq ce^{-\delta t}|x(0)|,\ \forall t\geq 0.}
Condition 3 is also known as the frequency condition. Condition 1 is the sector condition.
External links
Sufficient Conditions for Dynamical Output Feedback Stabilization via the Circle Criterion
Popov and Circle Criterion (Cam UK)
Stability analysis using the circle criterion in Mathematica
References
Haddad, Wassim M.; Chellaboina, VijaySekhar (2011). Nonlinear Dynamical Systems and Control: a Lyapunov-Based Approach. Princeton University Press. ISBN 9781400841042.