• Source: Clarke generalized derivative
  • In mathematics, the Clarke generalized derivatives are types generalized of derivatives that allow for the differentiation of nonsmooth functions. The Clarke derivatives were introduced by Francis Clarke in 1975.


    Definitions


    For a locally Lipschitz continuous function



    f
    :


    R


    n




    R

    ,


    {\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} ,}

    the Clarke generalized directional derivative of



    f


    {\displaystyle f}

    at



    x



    R


    n




    {\displaystyle x\in \mathbb {R} ^{n}}

    in the direction



    v



    R


    n




    {\displaystyle v\in \mathbb {R} ^{n}}

    is defined as





    f




    (
    x
    ,
    v
    )
    =

    lim sup

    y

    x
    ,
    h

    0





    f
    (
    y
    +
    h
    v
    )

    f
    (
    y
    )

    h


    ,


    {\displaystyle f^{\circ }(x,v)=\limsup _{y\rightarrow x,h\downarrow 0}{\frac {f(y+hv)-f(y)}{h}},}


    where



    lim sup


    {\displaystyle \limsup }

    denotes the limit supremum.
    Then, using the above definition of




    f






    {\displaystyle f^{\circ }}

    , the Clarke generalized gradient of



    f


    {\displaystyle f}

    at



    x


    {\displaystyle x}

    (also called the Clarke subdifferential) is given as











    f
    (
    x
    )
    :=
    {
    ξ



    R


    n


    :

    ξ
    ,
    v



    f




    (
    x
    ,
    v
    )
    ,

    v



    R


    n


    }
    ,


    {\displaystyle \partial ^{\circ }\!f(x):=\{\xi \in \mathbb {R} ^{n}:\langle \xi ,v\rangle \leq f^{\circ }(x,v),\forall v\in \mathbb {R} ^{n}\},}


    where





    ,




    {\displaystyle \langle \cdot ,\cdot \rangle }

    represents an inner product of vectors in




    R

    .


    {\displaystyle \mathbb {R} .}


    Note that the Clarke generalized gradient is set-valued—that is, at each



    x



    R


    n


    ,


    {\displaystyle x\in \mathbb {R} ^{n},}

    the function value










    f
    (
    x
    )


    {\displaystyle \partial ^{\circ }\!f(x)}

    is a set.
    More generally, given a Banach space



    X


    {\displaystyle X}

    and a subset



    Y

    X
    ,


    {\displaystyle Y\subset X,}

    the Clarke generalized directional derivative and generalized gradients are defined as above for a locally Lipschitz continuous function



    f
    :
    Y


    R

    .


    {\displaystyle f:Y\to \mathbb {R} .}



    See also


    Subgradient method — Class of optimization methods for nonsmooth functions.
    Subderivative


    References



    Clarke, F. H. (January 1990). Optimization and Nonsmooth Analysis. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611971309. ISBN 978-0-89871-256-8.
    Clarke, F. H.; Ledyaev, Yu. S.; Stern, R. J.; Wolenski, R. R. (1998). Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics. Vol. 178. Springer. doi:10.1007/b97650. ISBN 978-0-387-98336-3.

Kata Kunci Pencarian: