- Source: Diagonal subgroup
In the mathematical discipline of group theory, for a given group G, the diagonal subgroup of the n-fold direct product G n is the subgroup
{
(
g
,
…
,
g
)
∈
G
n
:
g
∈
G
}
.
{\displaystyle \{(g,\dots ,g)\in G^{n}:g\in G\}.}
This subgroup is isomorphic to G.
Properties and applications
If G acts on a set X, the n-fold diagonal subgroup has a natural action on the Cartesian product X n induced by the action of G on X, defined by
(
x
1
,
…
,
x
n
)
⋅
(
g
,
…
,
g
)
=
(
x
1
⋅
g
,
…
,
x
n
⋅
g
)
.
{\displaystyle (x_{1},\dots ,x_{n})\cdot (g,\dots ,g)=(x_{1}\!\cdot g,\dots ,x_{n}\!\cdot g).}
If G acts n-transitively on X, then the n-fold diagonal subgroup acts transitively on X n. More generally, for an integer k, if G acts kn-transitively on X, G acts k-transitively on X n.
Burnside's lemma can be proved using the action of the twofold diagonal subgroup.
See also
Diagonalizable group
References
Sahai, Vivek; Bist, Vikas (2003), Algebra, Alpha Science Int'l Ltd., p. 56, ISBN 9781842651575.
Kata Kunci Pencarian:
- Skyrmion
- Simetri dihedral dalam tiga dimensi
- Teorema Sylow
- Subgrup
- Grup terbangkit terbatas
- Diagonal subgroup
- Clifford group
- General linear group
- Maximal torus
- Congruence subgroup
- Cartan subgroup
- Generalized permutation matrix
- Direct product of groups
- Suzuki groups
- Sylow theorems