• Source: Exalcomm
  • In algebra, Exalcomm is a functor classifying the extensions of a commutative algebra by a module. More precisely, the elements of Exalcommk(R,M) are isomorphism classes of commutative k-algebras E with a homomorphism onto the k-algebra R whose kernel is the R-module M (with all pairs of elements in M having product 0). Note that some authors use Exal as the same functor. There are similar functors Exal and Exan for non-commutative rings and algebras, and functors Exaltop, Exantop, and Exalcotop that take a topology into account.
    "Exalcomm" is an abbreviation for "COMMutative ALgebra EXtension" (or rather for the corresponding French phrase). It was introduced by Grothendieck & Dieudonné (1964, 18.4.2).
    Exalcomm is one of the André–Quillen cohomology groups and one of the Lichtenbaum–Schlessinger functors.
    Given homomorphisms of commutative rings A → B → C and a C-module L there is an exact sequence of A-modules (Grothendieck & Dieudonné 1964, 20.2.3.1)








    0





    Der

    B



    (
    C
    ,
    L
    )


    Der

    A



    (
    C
    ,
    L
    )


    Der

    A



    (
    B
    ,
    L
    )







    Exalcomm

    B



    (
    C
    ,
    L
    )


    Exalcomm

    A



    (
    C
    ,
    L
    )


    Exalcomm

    A



    (
    B
    ,
    L
    )






    {\displaystyle {\begin{aligned}0\rightarrow \;&\operatorname {Der} _{B}(C,L)\rightarrow \operatorname {Der} _{A}(C,L)\rightarrow \operatorname {Der} _{A}(B,L)\rightarrow \\&\operatorname {Exalcomm} _{B}(C,L)\rightarrow \operatorname {Exalcomm} _{A}(C,L)\rightarrow \operatorname {Exalcomm} _{A}(B,L)\end{aligned}}}


    where DerA(B,L) is the module of derivations of the A-algebra B with values in L.
    This sequence can be extended further to the right using André–Quillen cohomology.


    Square-zero extensions


    In order to understand the construction of Exal, the notion of square-zero extensions must be defined. Fix a topos



    T


    {\displaystyle T}

    and let all algebras be algebras over it. Note that the topos of a point gives the special case of commutative rings, so the topos hypothesis can be ignored on a first reading.


    = Definition

    =
    In order to define the category





    Exal
    _




    {\displaystyle {\underline {\text{Exal}}}}

    we need to define what a square-zero extension actually is. Given a surjective morphism of



    A


    {\displaystyle A}

    -algebras



    p
    :
    E

    B


    {\displaystyle p:E\to B}

    it is called a square-zero extension if the kernel



    I


    {\displaystyle I}

    of



    p


    {\displaystyle p}

    has the property




    I

    2


    =
    (
    0
    )


    {\displaystyle I^{2}=(0)}

    is the zero ideal.


    Remark


    Note that the kernel can be equipped with a



    B


    {\displaystyle B}

    -module structure as follows: since



    p


    {\displaystyle p}

    is surjective, any



    b

    B


    {\displaystyle b\in B}

    has a lift to a



    x

    E


    {\displaystyle x\in E}

    , so



    b

    m
    :=
    x

    m


    {\displaystyle b\cdot m:=x\cdot m}

    for



    m

    I


    {\displaystyle m\in I}

    . Since any lift differs by an element



    k

    I


    {\displaystyle k\in I}

    in the kernel, and




    (
    x
    +
    k
    )

    m
    =
    x

    m
    +
    k

    m
    =
    x

    m


    {\displaystyle (x+k)\cdot m=x\cdot m+k\cdot m=x\cdot m}


    because the ideal is square-zero, this module structure is well-defined.


    = Examples

    =


    From deformations over the dual numbers


    Square-zero extensions are a generalization of deformations over the dual numbers. For example, a deformation over the dual numbers








    Spec


    (



    k
    [
    x
    ,
    y
    ]


    (

    y

    2




    x

    3


    )



    )







    Spec


    (



    k
    [
    x
    ,
    y
    ]
    [
    ε
    ]


    (

    y

    2




    x

    3


    +
    ε
    )



    )















    Spec

    (
    k
    )






    Spec

    (
    k
    [
    ε
    ]
    )






    {\displaystyle {\begin{matrix}{\text{Spec}}\left({\frac {k[x,y]}{(y^{2}-x^{3})}}\right)&\to &{\text{Spec}}\left({\frac {k[x,y][\varepsilon ]}{(y^{2}-x^{3}+\varepsilon )}}\right)\\\downarrow &&\downarrow \\{\text{Spec}}(k)&\to &{\text{Spec}}(k[\varepsilon ])\end{matrix}}}

    has the associated square-zero extension



    0

    (
    ε
    )




    k
    [
    x
    ,
    y
    ]
    [
    ε
    ]


    (

    y

    2




    x

    3


    +
    ε
    )







    k
    [
    x
    ,
    y
    ]


    (

    y

    2




    x

    3


    )




    0


    {\displaystyle 0\to (\varepsilon )\to {\frac {k[x,y][\varepsilon ]}{(y^{2}-x^{3}+\varepsilon )}}\to {\frac {k[x,y]}{(y^{2}-x^{3})}}\to 0}

    of



    k


    {\displaystyle k}

    -algebras.


    From more general deformations


    But, because the idea of square zero-extensions is more general, deformations over



    k
    [

    ε

    1


    ,

    ε

    2


    ]


    {\displaystyle k[\varepsilon _{1},\varepsilon _{2}]}

    where




    ε

    1




    ε

    2


    =
    0


    {\displaystyle \varepsilon _{1}\cdot \varepsilon _{2}=0}

    will give examples of square-zero extensions.


    Trivial square-zero extension


    For a



    B


    {\displaystyle B}

    -module



    M


    {\displaystyle M}

    , there is a trivial square-zero extension given by



    B

    M


    {\displaystyle B\oplus M}

    where the product structure is given by




    (
    b
    ,
    m
    )

    (

    b


    ,

    m


    )
    =
    (
    b

    b


    ,
    b

    m


    +

    b


    m
    )


    {\displaystyle (b,m)\cdot (b',m')=(bb',bm'+b'm)}


    hence the associated square-zero extension is




    0

    M

    B

    M

    B

    0


    {\displaystyle 0\to M\to B\oplus M\to B\to 0}


    where the surjection is the projection map forgetting



    M


    {\displaystyle M}

    .


    Construction


    The general abstract construction of Exal follows from first defining a category of extensions





    Exal
    _




    {\displaystyle {\underline {\text{Exal}}}}

    over a topos



    T


    {\displaystyle T}

    (or just the category of commutative rings), then extracting a subcategory where a base ring



    A


    {\displaystyle A}








    Exal
    _



    A




    {\displaystyle {\underline {\text{Exal}}}_{A}}

    is fixed, and then using a functor



    π
    :



    Exal
    _



    A


    (
    B
    ,

    )


    B-Mod



    {\displaystyle \pi :{\underline {\text{Exal}}}_{A}(B,-)\to {\text{B-Mod}}}

    to get the module of commutative algebra extensions





    Exal


    A


    (
    B
    ,
    M
    )


    {\displaystyle {\text{Exal}}_{A}(B,M)}

    for a fixed



    M


    Ob

    (

    B-Mod

    )


    {\displaystyle M\in {\text{Ob}}({\text{B-Mod}})}

    .


    = General Exal

    =
    For this fixed topos, let





    Exal
    _




    {\displaystyle {\underline {\text{Exal}}}}

    be the category of pairs



    (
    A
    ,
    p
    :
    E

    B
    )


    {\displaystyle (A,p:E\to B)}

    where



    p
    :
    E

    B


    {\displaystyle p:E\to B}

    is a surjective morphism of



    A


    {\displaystyle A}

    -algebras such that the kernel



    I


    {\displaystyle I}

    is square-zero, where morphisms are defined as commutative diagrams between



    (
    A
    ,
    p
    :
    E

    B
    )

    (

    A


    ,

    p


    :

    E




    B


    )


    {\displaystyle (A,p:E\to B)\to (A',p':E'\to B')}

    . There is a functor




    π
    :


    Exal
    _




    Algmod



    {\displaystyle \pi :{\underline {\text{Exal}}}\to {\text{Algmod}}}


    sending a pair



    (
    A
    ,
    p
    :
    E

    B
    )


    {\displaystyle (A,p:E\to B)}

    to a pair



    (
    A

    B
    ,
    I
    )


    {\displaystyle (A\to B,I)}

    where



    I


    {\displaystyle I}

    is a



    B


    {\displaystyle B}

    -module.


    = ExalA, ExalA(B, –)

    =
    Then, there is an overcategory denoted






    Exal
    _



    A




    {\displaystyle {\underline {\text{Exal}}}_{A}}

    (meaning there is a functor






    Exal
    _



    A







    Exal
    _






    {\displaystyle {\underline {\text{Exal}}}_{A}\to {\displaystyle {\underline {\text{Exal}}}}}

    ) where the objects are pairs



    (
    A
    ,
    p
    :
    E

    B
    )


    {\displaystyle (A,p:E\to B)}

    , but the first ring



    A


    {\displaystyle A}

    is fixed, so morphisms are of the form




    (
    A
    ,
    p
    :
    E

    B
    )

    (
    A
    ,

    p


    :

    E




    B


    )


    {\displaystyle (A,p:E\to B)\to (A,p':E'\to B')}


    There is a further reduction to another overcategory






    Exal
    _



    A


    (
    B
    ,

    )


    {\displaystyle {\underline {\text{Exal}}}_{A}(B,-)}

    where morphisms are of the form




    (
    A
    ,
    p
    :
    E

    B
    )

    (
    A
    ,

    p


    :

    E



    B
    )


    {\displaystyle (A,p:E\to B)\to (A,p':E'\to B)}



    = ExalA(B,I )

    =
    Finally, the category






    Exal
    _



    A


    (
    B
    ,
    I
    )


    {\displaystyle {\underline {\text{Exal}}}_{A}(B,I)}

    has a fixed kernel of the square-zero extensions. Note that in




    Algmod



    {\displaystyle {\text{Algmod}}}

    , for a fixed



    A
    ,
    B


    {\displaystyle A,B}

    , there is the subcategory



    (
    A

    B
    ,
    I
    )


    {\displaystyle (A\to B,I)}

    where



    I


    {\displaystyle I}

    is a



    B


    {\displaystyle B}

    -module, so it is equivalent to




    B-Mod



    {\displaystyle {\text{B-Mod}}}

    . Hence, the image of






    Exal
    _



    A


    (
    B
    ,
    I
    )


    {\displaystyle {\underline {\text{Exal}}}_{A}(B,I)}

    under the functor



    π


    {\displaystyle \pi }

    lives in




    B-Mod



    {\displaystyle {\text{B-Mod}}}

    .
    The isomorphism classes of objects has the structure of a



    B


    {\displaystyle B}

    -module since






    Exal
    _



    A


    (
    B
    ,
    I
    )


    {\displaystyle {\underline {\text{Exal}}}_{A}(B,I)}

    is a Picard stack, so the category can be turned into a module





    Exal


    A


    (
    B
    ,
    I
    )


    {\displaystyle {\text{Exal}}_{A}(B,I)}

    .


    Structure of ExalA(B, I )


    There are a few results on the structure of






    Exal
    _



    A


    (
    B
    ,
    I
    )


    {\displaystyle {\underline {\text{Exal}}}_{A}(B,I)}

    and





    Exal


    A


    (
    B
    ,
    I
    )


    {\displaystyle {\text{Exal}}_{A}(B,I)}

    which are useful.


    = Automorphisms

    =
    The group of automorphisms of an object



    X


    Ob

    (



    Exal
    _



    A


    (
    B
    ,
    I
    )
    )


    {\displaystyle X\in {\text{Ob}}({\underline {\text{Exal}}}_{A}(B,I))}

    can be identified with the automorphisms of the trivial extension



    B

    M


    {\displaystyle B\oplus M}

    (explicitly, we mean automorphisms



    B

    M

    B

    M


    {\displaystyle B\oplus M\to B\oplus M}

    compatible with both the inclusion



    M

    B

    M


    {\displaystyle M\to B\oplus M}

    and projection



    B

    M

    B


    {\displaystyle B\oplus M\to B}

    ). These are classified by the derivations module





    Der


    A


    (
    B
    ,
    M
    )


    {\displaystyle {\text{Der}}_{A}(B,M)}

    . Hence, the category






    Exal
    _



    A


    (
    B
    ,
    I
    )


    {\displaystyle {\underline {\text{Exal}}}_{A}(B,I)}

    is a torsor. In fact, this could also be interpreted as a Gerbe since this is a group acting on a stack.


    = Composition of extensions

    =
    There is another useful result about the categories






    Exal
    _



    A


    (
    B
    ,

    )


    {\displaystyle {\underline {\text{Exal}}}_{A}(B,-)}

    describing the extensions of



    I

    J


    {\displaystyle I\oplus J}

    , there is an isomorphism






    Exal
    _



    A


    (
    B
    ,
    I

    J
    )




    Exal
    _



    A


    (
    B
    ,
    I
    )
    ×



    Exal
    _



    A


    (
    B
    ,
    J
    )


    {\displaystyle {\underline {\text{Exal}}}_{A}(B,I\oplus J)\cong {\underline {\text{Exal}}}_{A}(B,I)\times {\underline {\text{Exal}}}_{A}(B,J)}

    It can be interpreted as saying the square-zero extension from a deformation in two directions can be decomposed into a pair of square-zero extensions, each in the direction of one of the deformations.


    Application


    For example, the deformations given by infinitesimals




    ε

    1


    ,

    ε

    2




    {\displaystyle \varepsilon _{1},\varepsilon _{2}}

    where




    ε

    1


    2


    =

    ε

    1



    ε

    2


    =

    ε

    2


    2


    =
    0


    {\displaystyle \varepsilon _{1}^{2}=\varepsilon _{1}\varepsilon _{2}=\varepsilon _{2}^{2}=0}

    gives the isomorphism






    Exal
    _



    A


    (
    B
    ,
    (

    ε

    1


    )

    (

    ε

    2


    )
    )




    Exal
    _



    A


    (
    B
    ,
    (

    ε

    1


    )
    )
    ×



    Exal
    _



    A


    (
    B
    ,
    (

    ε

    2


    )
    )


    {\displaystyle {\underline {\text{Exal}}}_{A}(B,(\varepsilon _{1})\oplus (\varepsilon _{2}))\cong {\underline {\text{Exal}}}_{A}(B,(\varepsilon _{1}))\times {\underline {\text{Exal}}}_{A}(B,(\varepsilon _{2}))}

    where



    I


    {\displaystyle I}

    is the module of these two infinitesimals. In particular, when relating this to Kodaira-Spencer theory, and using the comparison with the cotangent complex (given below) this means all such deformations are classified by




    H

    1


    (
    X
    ,

    T

    X


    )
    ×

    H

    1


    (
    X
    ,

    T

    X


    )


    {\displaystyle H^{1}(X,T_{X})\times H^{1}(X,T_{X})}

    hence they are just a pair of first order deformations paired together.


    Relation with the cotangent complex


    The cotangent complex contains all of the information about a deformation problem, and it is a fundamental theorem that given a morphism of rings



    A

    B


    {\displaystyle A\to B}

    over a topos



    T


    {\displaystyle T}

    (note taking



    T


    {\displaystyle T}

    as the point topos shows this generalizes the construction for general rings), there is a functorial isomorphism





    Exal


    A


    (
    B
    ,
    M
    )








    Ext


    B


    1


    (


    L


    B

    /

    A


    ,
    M
    )


    {\displaystyle {\text{Exal}}_{A}(B,M)\xrightarrow {\simeq } {\text{Ext}}_{B}^{1}(\mathbf {L} _{B/A},M)}

    (theorem III.1.2.3)So, given a commutative square of ring morphisms








    A








    B















    A





    B






    {\displaystyle {\begin{matrix}A'&\to &B'\\\downarrow &&\downarrow \\A&\to &B\end{matrix}}}

    over



    T


    {\displaystyle T}

    there is a square









    Exal


    A


    (
    B
    ,
    M
    )







    Ext


    B


    1


    (


    L


    B

    /

    A


    ,
    M
    )















    Exal



    A




    (

    B


    ,
    M
    )







    Ext



    B




    1


    (


    L



    B



    /


    A




    ,
    M
    )






    {\displaystyle {\begin{matrix}{\text{Exal}}_{A}(B,M)&\to &{\text{Ext}}_{B}^{1}(\mathbf {L} _{B/A},M)\\\downarrow &&\downarrow \\{\text{Exal}}_{A'}(B',M)&\to &{\text{Ext}}_{B'}^{1}(\mathbf {L} _{B'/A'},M)\end{matrix}}}

    whose horizontal arrows are isomorphisms and



    M


    {\displaystyle M}

    has the structure of a




    B




    {\displaystyle B'}

    -module from the ring morphism.


    See also


    Deformation theory
    Cotangent complex
    Picard stack


    References



    Tangent Spaces and Obstruction Theories - Olsson
    Grothendieck, Alexandre; Dieudonné, Jean (1964). "Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Première partie". Publications Mathématiques de l'IHÉS. 20: 65. doi:10.1007/bf02684747. MR 0173675.
    Weibel, Charles A. (1994), An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, ISBN 978-0-521-43500-0, ISBN 978-0-521-55987-4, MR1269324

Kata Kunci Pencarian: