- Source: Formation (group theory)
In group theory, a branch of mathematics, a formation is a class of groups closed under taking images and such that if G/M and G/N are in the formation then so is G/M∩N. Gaschütz (1962) introduced formations to unify the theory of Hall subgroups and Carter subgroups of finite solvable groups.
Some examples of formations are the formation of p-groups for a prime p, the formation of π-groups for a set of primes π, and the formation of nilpotent groups.
Special cases
A Melnikov formation is closed under taking quotients, normal subgroups and group extensions. Thus a Melnikov formation M has the property that for every short exact sequence
1
→
A
→
B
→
C
→
1
{\displaystyle 1\rightarrow A\rightarrow B\rightarrow C\rightarrow 1\ }
A and C are in M if and only if B is in M.
A full formation is a Melnikov formation which is also closed under taking subgroups.
An almost full formation is one which is closed under quotients, direct products and subgroups, but not necessarily extensions. The families of finite abelian groups and finite nilpotent groups are almost full, but neither full nor Melnikov.
Schunck classes
A Schunck class, introduced by Schunck (1967), is a generalization of a formation, consisting of a class of groups such that a group is in the class if and only if every primitive factor group is in the class. Here a group is called primitive if it has a self-centralizing normal abelian subgroup.
Notes
References
Ballester-Bolinches, Adolfo; Ezquerro, Luis M. (2006), Classes of finite groups, Mathematics and Its Applications (Springer), vol. 584, Berlin, New York: Springer-Verlag, ISBN 978-1-4020-4718-3, MR 2241927
Doerk, Klaus; Hawkes, Trevor (1992), Finite soluble groups, de Gruyter Expositions in Mathematics, vol. 4, Berlin: Walter de Gruyter & Co., ISBN 978-3-11-012892-5, MR 1169099
Fried, Michael D.; Jarden, Moshe (2004), Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 11 (2nd revised and enlarged ed.), Springer-Verlag, ISBN 3-540-22811-X, Zbl 1055.12003
Gaschütz, Wolfgang (1962), "Zur Theorie der endlichen auflösbaren Gruppen", Mathematische Zeitschrift, 80: 300–305, doi:10.1007/BF01162386, ISSN 0025-5874, MR 0179257
Huppert, Bertram (1967), Endliche Gruppen (in German), Berlin, New York: Springer-Verlag, ISBN 978-3-540-03825-2, MR 0224703, OCLC 527050
Schunck, Hermann (1967), "H-Untergruppen in endlichen auflösbaren Gruppen", Mathematische Zeitschrift, 97: 326–330, doi:10.1007/BF01112173, ISSN 0025-5874, MR 0209356
Kata Kunci Pencarian:
- Ilmu komputer teoretis
- Bahasa Inggris
- Muhammad
- Globalisasi
- Kolaborasi
- Rasisme
- Bumi
- Filsafat
- Teori Pemosisian
- Bangsa
- Formation (group theory)
- Formation
- Star formation
- Racial formation theory
- Benson group increment theory
- In-group favoritism
- History of group theory
- Muted group theory
- Identity formation
- State formation