- Source: Frobenius characteristic map
In mathematics, especially representation theory and combinatorics, a Frobenius characteristic map is an isometric isomorphism between the ring of characters of symmetric groups and the ring of symmetric functions. It builds a bridge between representation theory of the symmetric groups and algebraic combinatorics. This map makes it possible to study representation problems with help of symmetric functions and vice versa. This map is named after German mathematician Ferdinand Georg Frobenius.
Definition
= The ring of characters
=Source:
Let
R
n
{\displaystyle R^{n}}
be the
Z
{\displaystyle \mathbb {Z} }
-module generated by all irreducible characters of
S
n
{\displaystyle S_{n}}
over
C
{\displaystyle \mathbb {C} }
. In particular
S
0
=
{
1
}
{\displaystyle S_{0}=\{1\}}
and therefore
R
0
=
Z
{\displaystyle R^{0}=\mathbb {Z} }
. The ring of characters is defined to be the direct sum
R
=
⨁
n
=
0
∞
R
n
{\displaystyle R=\bigoplus _{n=0}^{\infty }R^{n}}
with the following multiplication to make
R
{\displaystyle R}
a graded commutative ring. Given
f
∈
R
n
{\displaystyle f\in R^{n}}
and
g
∈
R
m
{\displaystyle g\in R^{m}}
, the product is defined to be
f
⋅
g
=
ind
S
m
×
S
n
S
m
+
n
(
f
×
g
)
{\displaystyle f\cdot g=\operatorname {ind} _{S_{m}\times S_{n}}^{S_{m+n}}(f\times g)}
with the understanding that
S
m
×
S
n
{\displaystyle S_{m}\times S_{n}}
is embedded into
S
m
+
n
{\displaystyle S_{m+n}}
and
ind
{\displaystyle \operatorname {ind} }
denotes the induced character.
= Frobenius characteristic map
=For
f
∈
R
n
{\displaystyle f\in R^{n}}
, the value of the Frobenius characteristic map
ch
{\displaystyle \operatorname {ch} }
at
f
{\displaystyle f}
, which is also called the Frobenius image of
f
{\displaystyle f}
, is defined to be the polynomial
ch
(
f
)
=
1
n
!
∑
w
∈
S
n
f
(
w
)
p
ρ
(
w
)
=
∑
μ
⊢
n
z
μ
−
1
f
(
μ
)
p
μ
.
{\displaystyle \operatorname {ch} (f)={\frac {1}{n!}}\sum _{w\in S_{n}}f(w)p_{\rho (w)}=\sum _{\mu \vdash n}z_{\mu }^{-1}f(\mu )p_{\mu }.}
= Remarks
=Here,
ρ
(
w
)
{\displaystyle \rho (w)}
is the integer partition determined by
w
{\displaystyle w}
. For example, when
n
=
3
{\displaystyle n=3}
and
w
=
(
12
)
(
3
)
{\displaystyle w=(12)(3)}
,
ρ
(
w
)
=
(
2
,
1
)
{\displaystyle \rho (w)=(2,1)}
corresponds to the partition
3
=
2
+
1
{\displaystyle 3=2+1}
. Conversely, a partition
μ
{\displaystyle \mu }
of
n
{\displaystyle n}
(written as
μ
⊢
n
{\displaystyle \mu \vdash n}
) determines a conjugacy class
K
μ
{\displaystyle K_{\mu }}
in
S
n
{\displaystyle S_{n}}
. For example, given
μ
=
(
2
,
1
)
⊢
3
{\displaystyle \mu =(2,1)\vdash 3}
,
K
μ
=
{
(
12
)
(
3
)
,
(
13
)
(
2
)
,
(
23
)
(
1
)
}
{\displaystyle K_{\mu }=\{(12)(3),(13)(2),(23)(1)\}}
is a conjugacy class. Hence by abuse of notation
f
(
μ
)
{\displaystyle f(\mu )}
can be used to denote the value of
f
{\displaystyle f}
on the conjugacy class determined by
μ
{\displaystyle \mu }
. Note this always makes sense because
f
{\displaystyle f}
is a class function.
Let
μ
{\displaystyle \mu }
be a partition of
n
{\displaystyle n}
, then
p
μ
{\displaystyle p_{\mu }}
is the product of power sum symmetric polynomials determined by
μ
{\displaystyle \mu }
of
n
{\displaystyle n}
variables. For example, given
μ
=
(
3
,
2
)
{\displaystyle \mu =(3,2)}
, a partition of
5
{\displaystyle 5}
,
p
μ
(
x
1
,
x
2
,
x
3
,
x
4
,
x
5
)
=
p
3
(
x
1
,
x
2
,
x
3
,
x
4
,
x
5
)
p
2
(
x
1
,
x
2
,
x
3
,
x
4
,
x
5
)
=
(
x
1
3
+
x
2
3
+
x
3
3
+
x
4
3
+
x
5
3
)
(
x
1
2
+
x
2
2
+
x
3
2
+
x
4
2
+
x
5
2
)
{\displaystyle {\begin{aligned}p_{\mu }(x_{1},x_{2},x_{3},x_{4},x_{5})&=p_{3}(x_{1},x_{2},x_{3},x_{4},x_{5})p_{2}(x_{1},x_{2},x_{3},x_{4},x_{5})\\&=(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+x_{5}^{3})(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2})\end{aligned}}}
Finally,
z
λ
{\displaystyle z_{\lambda }}
is defined to be
n
!
k
λ
{\displaystyle {\frac {n!}{k_{\lambda }}}}
, where
k
λ
{\displaystyle k_{\lambda }}
is the cardinality of the conjugacy class
K
λ
{\displaystyle K_{\lambda }}
. For example, when
λ
=
(
2
,
1
)
⊢
3
{\displaystyle \lambda =(2,1)\vdash 3}
,
z
λ
=
3
!
3
=
2
{\displaystyle z_{\lambda }={\frac {3!}{3}}=2}
. The second definition of
ch
(
f
)
{\displaystyle \operatorname {ch} (f)}
can therefore be justified directly:
1
n
!
∑
w
∈
S
n
f
(
w
)
p
ρ
(
w
)
=
∑
μ
⊢
n
k
μ
n
!
f
(
μ
)
p
μ
=
∑
μ
⊢
n
z
μ
−
1
f
(
μ
)
p
μ
{\displaystyle {\frac {1}{n!}}\sum _{w\in S_{n}}f(w)p_{\rho (w)}=\sum _{\mu \vdash n}{\frac {k_{\mu }}{n!}}f(\mu )p_{\mu }=\sum _{\mu \vdash n}z_{\mu }^{-1}f(\mu )p_{\mu }}
Properties
= Inner product and isometry
=Hall inner product
Source:
The inner product on the ring of symmetric functions is the Hall inner product. It is required that
⟨
h
μ
,
m
λ
⟩
=
δ
μ
λ
{\textstyle \langle h_{\mu },m_{\lambda }\rangle =\delta _{\mu \lambda }}
. Here,
m
λ
{\displaystyle m_{\lambda }}
is a monomial symmetric function and
h
μ
{\displaystyle h_{\mu }}
is a product of completely homogeneous symmetric functions. To be precise, let
μ
=
(
μ
1
,
μ
2
,
⋯
)
{\displaystyle \mu =(\mu _{1},\mu _{2},\cdots )}
be a partition of integer, then
h
μ
=
h
μ
1
h
μ
2
⋯
.
{\displaystyle h_{\mu }=h_{\mu _{1}}h_{\mu _{2}}\cdots .}
In particular, with respect to this inner product,
{
p
λ
}
{\displaystyle \{p_{\lambda }\}}
form a orthogonal basis:
⟨
p
λ
,
p
μ
⟩
=
δ
λ
μ
z
λ
{\textstyle \langle p_{\lambda },p_{\mu }\rangle =\delta _{\lambda \mu }z_{\lambda }}
, and the Schur polynomials
{
s
λ
}
{\displaystyle \{s_{\lambda }\}}
form a orthonormal basis:
⟨
s
λ
,
s
μ
⟩
=
δ
λ
μ
{\textstyle \langle s_{\lambda },s_{\mu }\rangle =\delta _{\lambda \mu }}
, where
δ
λ
μ
{\displaystyle \delta _{\lambda \mu }}
is the Kronecker delta.
Inner product of characters
Let
f
,
g
∈
R
n
{\displaystyle f,g\in R^{n}}
, their inner product is defined to be
⟨
f
,
g
⟩
n
=
1
n
!
∑
w
∈
S
n
f
(
w
)
g
(
w
)
=
∑
μ
⊢
n
z
μ
−
1
f
(
μ
)
g
(
μ
)
{\displaystyle \langle f,g\rangle _{n}={\frac {1}{n!}}\sum _{w\in S_{n}}f(w)g(w)=\sum _{\mu \vdash n}z_{\mu }^{-1}f(\mu )g(\mu )}
If
f
=
∑
n
f
n
,
g
=
∑
n
g
n
{\displaystyle f=\sum _{n}f_{n},g=\sum _{n}g_{n}}
, then
⟨
f
,
g
⟩
=
∑
n
⟨
f
n
,
g
n
⟩
n
{\displaystyle \langle f,g\rangle =\sum _{n}\langle f_{n},g_{n}\rangle _{n}}
Frobenius characteristic map as an isometry
One can prove that the Frobenius characteristic map is an isometry by explicit computation. To show this, it suffices to assume that
f
,
g
∈
R
n
{\displaystyle f,g\in R^{n}}
:
⟨
ch
(
f
)
,
ch
(
g
)
⟩
=
⟨
∑
μ
⊢
n
z
μ
−
1
f
(
μ
)
p
μ
,
∑
λ
⊢
n
z
λ
−
1
g
(
λ
)
p
λ
⟩
=
∑
μ
,
λ
⊢
n
z
μ
−
1
z
λ
−
1
f
(
μ
)
g
(
μ
)
⟨
p
μ
,
p
λ
⟩
=
∑
μ
,
λ
⊢
n
z
μ
−
1
z
λ
−
1
f
(
μ
)
g
(
μ
)
z
μ
δ
μ
λ
=
∑
μ
⊢
n
z
μ
−
1
f
(
μ
)
g
(
μ
)
=
⟨
f
,
g
⟩
{\displaystyle {\begin{aligned}\langle \operatorname {ch} (f),\operatorname {ch} (g)\rangle &=\left\langle \sum _{\mu \vdash n}z_{\mu }^{-1}f(\mu )p_{\mu },\sum _{\lambda \vdash n}z_{\lambda }^{-1}g(\lambda )p_{\lambda }\right\rangle \\&=\sum _{\mu ,\lambda \vdash n}z_{\mu }^{-1}z_{\lambda }^{-1}f(\mu )g(\mu )\langle p_{\mu },p_{\lambda }\rangle \\&=\sum _{\mu ,\lambda \vdash n}z_{\mu }^{-1}z_{\lambda }^{-1}f(\mu )g(\mu )z_{\mu }\delta _{\mu \lambda }\\&=\sum _{\mu \vdash n}z_{\mu }^{-1}f(\mu )g(\mu )\\&=\langle f,g\rangle \end{aligned}}}
= Ring isomorphism
=The map
ch
{\displaystyle \operatorname {ch} }
is an isomorphism between
R
{\displaystyle R}
and the
Z
{\displaystyle \mathbb {Z} }
-ring
Λ
{\displaystyle \Lambda }
. The fact that this map is a ring homomorphism can be shown by Frobenius reciprocity. For
f
∈
R
n
{\displaystyle f\in R^{n}}
and
g
∈
R
m
{\displaystyle g\in R^{m}}
,
ch
(
f
⋅
g
)
=
⟨
ind
S
n
×
S
m
S
m
+
n
(
f
×
g
)
,
ψ
⟩
m
+
n
=
⟨
f
×
g
,
res
S
n
×
S
m
S
m
+
n
ψ
⟩
=
1
n
!
m
!
∑
π
σ
∈
S
n
×
S
m
(
f
×
g
)
(
π
σ
)
p
ρ
(
π
σ
)
=
1
n
!
m
!
∑
π
∈
S
n
,
σ
∈
S
m
f
(
π
)
g
(
σ
)
p
ρ
(
π
)
p
ρ
(
σ
)
=
[
1
n
!
∑
π
∈
S
n
f
(
π
)
p
ρ
(
π
)
]
[
1
m
!
∑
σ
∈
S
m
g
(
σ
)
p
ρ
(
σ
)
]
=
ch
(
f
)
ch
(
g
)
{\displaystyle {\begin{aligned}\operatorname {ch} (f\cdot g)&=\langle \operatorname {ind} _{S_{n}\times S_{m}}^{S_{m+n}}(f\times g),\psi \rangle _{m+n}\\&=\langle f\times g,\operatorname {res} _{S_{n}\times S_{m}}^{S_{m+n}}\psi \rangle \\&={\frac {1}{n!m!}}\sum _{\pi \sigma \in S_{n}\times S_{m}}(f\times g)(\pi \sigma )p_{\rho (\pi \sigma )}\\&={\frac {1}{n!m!}}\sum _{\pi \in S_{n},\sigma \in S_{m}}f(\pi )g(\sigma )p_{\rho (\pi )}p_{\rho (\sigma )}\\&=\left[{\frac {1}{n!}}\sum _{\pi \in S_{n}}f(\pi )p_{\rho (\pi )}\right]\left[{\frac {1}{m!}}\sum _{\sigma \in S_{m}}g(\sigma )p_{\rho (\sigma )}\right]\\&=\operatorname {ch} (f)\operatorname {ch} (g)\end{aligned}}}
Defining
ψ
:
S
n
→
Λ
n
{\displaystyle \psi :S_{n}\to \Lambda ^{n}}
by
ψ
(
w
)
=
p
ρ
(
w
)
{\displaystyle \psi (w)=p_{\rho (w)}}
, the Frobenius characteristic map can be written in a shorter form:
ch
(
f
)
=
⟨
f
,
ψ
⟩
n
,
f
∈
R
n
.
{\displaystyle \operatorname {ch} (f)=\langle f,\psi \rangle _{n},\quad f\in R^{n}.}
In particular, if
f
{\displaystyle f}
is an irreducible representation, then
ch
(
f
)
{\displaystyle \operatorname {ch} (f)}
is a Schur polynomial of
n
{\displaystyle n}
variables. It follows that
ch
{\displaystyle \operatorname {ch} }
maps an orthonormal basis of
R
{\displaystyle R}
to an orthonormal basis of
Λ
{\displaystyle \Lambda }
. Therefore it is an isomorphism.
Example
= Computing the Frobenius image
=Let
f
{\displaystyle f}
be the alternating representation of
S
3
{\displaystyle S_{3}}
, which is defined by
f
(
σ
)
v
=
sgn
(
σ
)
v
{\displaystyle f(\sigma )v=\operatorname {sgn}(\sigma )v}
, where
sgn
(
σ
)
{\displaystyle \operatorname {sgn}(\sigma )}
is the sign of the permutation
σ
{\displaystyle \sigma }
. There are three conjugacy classes of
S
3
{\displaystyle S_{3}}
, which can be represented by
e
{\displaystyle e}
(identity or the product of three 1-cycles),
(
12
)
{\displaystyle (12)}
(transpositions or the products of one 2-cycle and one 1-cycle) and
(
123
)
{\displaystyle (123)}
(3-cycles). These three conjugacy classes therefore correspond to three partitions of
3
{\displaystyle 3}
given by
(
1
,
1
,
1
)
{\displaystyle (1,1,1)}
,
(
2
,
1
)
{\displaystyle (2,1)}
,
(
3
)
{\displaystyle (3)}
. The values of
f
{\displaystyle f}
on these three classes are
1
,
−
1
,
1
{\displaystyle 1,-1,1}
respectively. Therefore:
ch
(
f
)
=
z
(
1
,
1
,
1
)
−
1
f
(
(
1
,
1
,
1
)
)
p
(
1
,
1
,
1
)
+
z
(
2
,
1
)
f
(
(
2
,
1
)
)
p
(
2
,
1
)
+
z
(
3
)
−
1
f
(
(
3
)
)
p
(
3
)
=
1
6
(
x
1
+
x
2
+
x
3
)
3
−
1
2
(
x
1
2
+
x
2
2
+
x
3
2
)
(
x
1
+
x
2
+
x
3
)
+
1
3
(
x
1
3
+
x
2
3
+
x
3
3
)
=
x
1
x
2
x
3
{\displaystyle {\begin{aligned}\operatorname {ch} (f)&=z_{(1,1,1)}^{-1}f((1,1,1))p_{(1,1,1)}+z_{(2,1)}f((2,1))p_{(2,1)}+z_{(3)}^{-1}f((3))p_{(3)}\\&={\frac {1}{6}}(x_{1}+x_{2}+x_{3})^{3}-{\frac {1}{2}}(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})(x_{1}+x_{2}+x_{3})+{\frac {1}{3}}(x_{1}^{3}+x_{2}^{3}+x_{3}^{3})\\&=x_{1}x_{2}x_{3}\end{aligned}}}
Since
f
{\displaystyle f}
is an irreducible representation (which can be shown by computing its characters), the computation above gives the Schur polynomial of three variables corresponding to the partition
3
=
1
+
1
+
1
{\displaystyle 3=1+1+1}
.
References
Kata Kunci Pencarian:
- Frobenius characteristic map
- Frobenius endomorphism
- List of things named after Ferdinand Georg Frobenius
- Perfect field
- Characteristic (algebra)
- Dyadic transformation
- Unipotent
- Lefschetz fixed-point theorem
- Additive polynomial
- Cartier isomorphism