- 1
- 2
- Source: Great inverted snub icosidodecahedron
- Daftar bentuk matematika
- Great inverted snub icosidodecahedron
- Great snub icosidodecahedron
- Snub dodecahedron
- Great retrosnub icosidodecahedron
- Compound of two great inverted snub icosidodecahedra
- List of mathematical shapes
- Snub polyhedron
- Inverted snub dodecadodecahedron
- List of polygons, polyhedra and polytopes
- List of uniform polyhedra
The Greatest of All Time (2024)
The Great Seduction (2023)
The Great Escaper (2023)
Hajjan (2024)
Batman v Superman: Dawn of Justice (2016)
Resident Evil: Welcome to Raccoon City (2021)
Gridman Universe (2023)
Spy Kids: Armageddon (2023)
The Apartment (1996)
Maze Runner: The Scorch Trials (2015)
No More Posts Available.
No more pages to load.
In geometry, the great inverted snub icosidodecahedron (or great vertisnub icosidodecahedron) is a uniform star polyhedron, indexed as U69. It is given a SchlƤfli symbol sr{5ā3,3}, and Coxeter-Dynkin diagram . In the book Polyhedron Models by Magnus Wenninger, the polyhedron is misnamed great snub icosidodecahedron, and vice versa.
Cartesian coordinates
Let
Ī¾
ā
ā
0.5055605785332548
{\displaystyle \xi \approx -0.5055605785332548}
be the largest (least negative) negative zero of the polynomial
x
3
+
2
x
2
ā
Ļ
ā
2
{\displaystyle x^{3}+2x^{2}-\phi ^{-2}}
, where
Ļ
{\displaystyle \phi }
is the golden ratio. Let the point
p
{\displaystyle p}
be given by
p
=
(
Ī¾
Ļ
ā
2
ā
Ļ
ā
2
Ī¾
ā
Ļ
ā
3
+
Ļ
ā
1
Ī¾
+
2
Ļ
ā
1
Ī¾
2
)
{\displaystyle p={\begin{pmatrix}\xi \\\phi ^{-2}-\phi ^{-2}\xi \\-\phi ^{-3}+\phi ^{-1}\xi +2\phi ^{-1}\xi ^{2}\end{pmatrix}}}
.
Let the matrix
M
{\displaystyle M}
be given by
M
=
(
1
/
2
ā
Ļ
/
2
1
/
(
2
Ļ
)
Ļ
/
2
1
/
(
2
Ļ
)
ā
1
/
2
1
/
(
2
Ļ
)
1
/
2
Ļ
/
2
)
{\displaystyle M={\begin{pmatrix}1/2&-\phi /2&1/(2\phi )\\\phi /2&1/(2\phi )&-1/2\\1/(2\phi )&1/2&\phi /2\end{pmatrix}}}
.
M
{\displaystyle M}
is the rotation around the axis
(
1
,
0
,
Ļ
)
{\displaystyle (1,0,\phi )}
by an angle of
2
Ļ
/
5
{\displaystyle 2\pi /5}
, counterclockwise. Let the linear transformations
T
0
,
ā¦
,
T
11
{\displaystyle T_{0},\ldots ,T_{11}}
be the transformations which send a point
(
x
,
y
,
z
)
{\displaystyle (x,y,z)}
to the even permutations of
(
Ā±
x
,
Ā±
y
,
Ā±
z
)
{\displaystyle (\pm x,\pm y,\pm z)}
with an even number of minus signs.
The transformations
T
i
{\displaystyle T_{i}}
constitute the group of rotational symmetries of a regular tetrahedron.
The transformations
T
i
M
j
{\displaystyle T_{i}M^{j}}
(
i
=
0
,
ā¦
,
11
{\displaystyle (i=0,\ldots ,11}
,
j
=
0
,
ā¦
,
4
)
{\displaystyle j=0,\ldots ,4)}
constitute the group of rotational symmetries of a regular icosahedron.
Then the 60 points
T
i
M
j
p
{\displaystyle T_{i}M^{j}p}
are the vertices of a great snub icosahedron. The edge length equals
ā
2
Ī¾
1
ā
Ī¾
{\displaystyle -2\xi {\sqrt {1-\xi }}}
, the circumradius equals
ā
Ī¾
2
ā
Ī¾
{\displaystyle -\xi {\sqrt {2-\xi }}}
, and the midradius equals
ā
Ī¾
{\displaystyle -\xi }
.
For a great snub icosidodecahedron whose edge length is 1,
the circumradius is
R
=
1
2
2
ā
Ī¾
1
ā
Ī¾
ā
0.6450202372957795
{\displaystyle R={\frac {1}{2}}{\sqrt {\frac {2-\xi }{1-\xi }}}\approx 0.6450202372957795}
Its midradius is
r
=
1
2
1
1
ā
Ī¾
ā
0.4074936889340787
{\displaystyle r={\frac {1}{2}}{\sqrt {\frac {1}{1-\xi }}}\approx 0.4074936889340787}
The four positive real roots of the sextic in R2,
4096
R
12
ā
27648
R
10
+
47104
R
8
ā
35776
R
6
+
13872
R
4
ā
2696
R
2
+
209
=
0
{\displaystyle 4096R^{12}-27648R^{10}+47104R^{8}-35776R^{6}+13872R^{4}-2696R^{2}+209=0}
are the circumradii of the snub dodecahedron (U29), great snub icosidodecahedron (U57), great inverted snub icosidodecahedron (U69), and great retrosnub icosidodecahedron (U74).
Related polyhedra
= Great inverted pentagonal hexecontahedron
=The great inverted pentagonal hexecontahedron (or petaloidal trisicosahedron) is a nonconvex isohedral polyhedron. It is composed of 60 concave pentagonal faces, 150 edges and 92 vertices.
It is the dual of the uniform great inverted snub icosidodecahedron.
Proportions
Denote the golden ratio by
Ļ
{\displaystyle \phi }
. Let
Ī¾
ā
0.252
780
289
27
{\displaystyle \xi \approx 0.252\,780\,289\,27}
be the smallest positive zero of the polynomial
P
=
8
x
3
ā
8
x
2
+
Ļ
ā
2
{\displaystyle P=8x^{3}-8x^{2}+\phi ^{-2}}
. Then each pentagonal face has four equal angles of
arccos
ā”
(
Ī¾
)
ā
75.357
903
417
42
ā
{\displaystyle \arccos(\xi )\approx 75.357\,903\,417\,42^{\circ }}
and one angle of
360
ā
ā
arccos
ā”
(
ā
Ļ
ā
1
+
Ļ
ā
2
Ī¾
)
ā
238.568
386
330
33
ā
{\displaystyle 360^{\circ }-\arccos(-\phi ^{-1}+\phi ^{-2}\xi )\approx 238.568\,386\,330\,33^{\circ }}
. Each face has three long and two short edges. The ratio
l
{\displaystyle l}
between the lengths of the long and the short edges is given by
l
=
2
ā
4
Ī¾
2
1
ā
2
Ī¾
ā
3.528
053
034
81
{\displaystyle l={\frac {2-4\xi ^{2}}{1-2\xi }}\approx 3.528\,053\,034\,81}
.
The dihedral angle equals
arccos
ā”
(
Ī¾
/
(
Ī¾
+
1
)
)
ā
78.359
199
060
62
ā
{\displaystyle \arccos(\xi /(\xi +1))\approx 78.359\,199\,060\,62^{\circ }}
. Part of each face lies inside the solid, hence is invisible in solid models. The other two zeroes of the polynomial
P
{\displaystyle P}
play a similar role in the description of the great pentagonal hexecontahedron and the great pentagrammic hexecontahedron.
See also
List of uniform polyhedra
Great snub icosidodecahedron
Great retrosnub icosidodecahedron
References
Wenninger, Magnus (1983), Dual Models, Cambridge University Press, ISBN 978-0-521-54325-5, MR 0730208 p. 126
External links
Weisstein, Eric W. "Great inverted pentagonal hexecontahedron". MathWorld.
Weisstein, Eric W. "Great inverted snub icosidodecahedron". MathWorld.