- Source: Group field theory
- Hybrid Theory
- Teori medan kuantum
- Kurt Lewin
- Dokumen
- Bahasa Inggris
- Kondensat Bose–Einstein
- Ilmu komputer teoretis
- Laboratorium Fisika Plasma Princeton
- Rumus integral lintasan
- Meteora (album)
- Group field theory
- Quantum field theory
- Gauge theory
- Group theory
- Galois group
- Yang–Mills theory
- Conformal field theory
- Lagrangian (field theory)
- Class field theory
- Field (mathematics)
Group field theory (GFT) is a quantum field theory in which the base manifold is taken to be a Lie group. It is closely related to background independent quantum gravity approaches such as loop quantum gravity, the spin foam formalism and causal dynamical triangulation. Its perturbative expansion can be interpreted as spin foams and simplicial pseudo-manifolds (depending on the representation of the fields). Thus, its partition function defines a non-perturbative sum over all simplicial topologies and geometries, giving a path integral formulation of quantum spacetime.
See also
Shape dynamics
Causal Sets
Fractal cosmology
Loop quantum gravity
Planck scale
Quantum gravity
Regge calculus
Simplex
Simplicial manifold
Spin foam
References
Wayback Machine see Sec 6.8 Dynamics: III. Group field theory
Freidel, L. (2005). "Group Field Theory: An Overview". International Journal of Theoretical Physics. 44 (10): 1769–1783. arXiv:hep-th/0505016. Bibcode:2005IJTP...44.1769F. doi:10.1007/s10773-005-8894-1. S2CID 119099369.
Oriti, Daniele (2006). "The group field theory approach to quantum gravity". arXiv:gr-qc/0607032. Bibcode:2006gr.qc.....7032O. {{cite journal}}: Cite journal requires |journal= (help)
Oriti, Daniele (2009). "The Group Field Theory Approach to Quantum Gravity: A QFT for the Microstructure of Spacetime" (PDF). arXiv:0912.2441. {{cite journal}}: Cite journal requires |journal= (help)
Geloun, Joseph Ben; Krajewski, Thomas; Magnen, Jacques; Rivasseau, Vincent (2010). "Linearized group field theory and power-counting theorems". Classical and Quantum Gravity. 27 (15): 155012. arXiv:1002.3592. Bibcode:2010CQGra..27o5012B. doi:10.1088/0264-9381/27/15/155012. S2CID 29020457.
Ben Geloun, J.; Gurau, R.; Rivasseau, V. (2010). "EPRL/FK group field theory". Europhysics Letters. 92 (6): 60008. arXiv:1008.0354. Bibcode:2010EL.....9260008B. doi:10.1209/0295-5075/92/60008. S2CID 119247896.
Ashtekar, Abhay; Campiglia, Miguel; Henderson, Adam (2009). "Loop quantum cosmology and spin foams". Physics Letters B. 681 (4): 347–352. arXiv:0909.4221. Bibcode:2009PhLB..681..347A. doi:10.1016/j.physletb.2009.10.042. S2CID 56281948.
Fairbairn, Winston J.; Livine, Etera R. (2007). "3D spinfoam quantum gravity: Matter as a phase of the group field theory". Classical and Quantum Gravity. 24 (20): 5277–5297. arXiv:gr-qc/0702125. Bibcode:2007CQGra..24.5277F. doi:10.1088/0264-9381/24/20/021. S2CID 119369221.
Alexandrov, Sergei; Roche, Philippe (2011). "Critical overview of loops and foams". Physics Reports. 506 (3–4): 41–86. arXiv:1009.4475. Bibcode:2011PhR...506...41A. doi:10.1016/j.physrep.2011.05.002. S2CID 118543391.
Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo (2013). "Cosmology from Group Field Theory Formalism for Quantum Gravity". Physical Review Letters. 111 (3): 031301. arXiv:1303.3576. Bibcode:2013PhRvL.111c1301G. doi:10.1103/PhysRevLett.111.031301. PMID 23909305. S2CID 14203682.