- Source: Half-period ratio
In mathematics, the half-period ratio τ of an elliptic function is the ratio
τ
=
ω
2
ω
1
{\displaystyle \tau ={\frac {\omega _{2}}{\omega _{1}}}}
of the two half-periods
ω
1
2
{\displaystyle {\frac {\omega _{1}}{2}}}
and
ω
2
2
{\displaystyle {\frac {\omega _{2}}{2}}}
of the elliptic function, where the elliptic function is defined in such a way that
ℑ
(
τ
)
>
0
{\displaystyle \Im (\tau )>0}
is in the upper half-plane.
Quite often in the literature, ω1 and ω2 are defined to be the periods of an elliptic function rather than its half-periods. Regardless of the choice of notation, the ratio ω2/ω1 of periods is identical to the ratio (ω2/2)/(ω1/2) of half-periods. Hence, the period ratio is the same as the "half-period ratio".
Note that the half-period ratio can be thought of as a simple number, namely, one of the parameters to elliptic functions, or it can be thought of as a function itself, because the half periods can be given in terms of the elliptic modulus or in terms of the nome.
See the pages on quarter period and elliptic integrals for additional definitions and relations on the arguments and parameters to elliptic functions.
See also
Modular form
Nome
References
Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions, (1964) Dover Publications, New York. OCLC 1097832 See chapters 16 and 17.
Kata Kunci Pencarian:
- Paus Yohanes Paulus II
- Mumbai
- Bratislava
- Half-period ratio
- Fundamental pair of periods
- List of complex analysis topics
- Odds ratio
- Nome (mathematics)
- Poincaré metric
- Hazard ratio
- Monstrous moonshine
- Human sex ratio
- Expense ratio