- Source: Hexokinase II
Hexokinase II, also known as Hexokinase B and HK2, is an enzyme which in humans is encoded by the HK2 gene on chromosome 2. Hexokinases phosphorylate glucose to produce glucose 6-phosphate, the first step in most glucose metabolism pathways. Hexokinase II is the predominant hexokinase form found in skeletal muscle. It localizes to the outer membrane of mitochondria. Expression of the HK2 gene is insulin-responsive, and studies in rat suggest that it is involved in the increased rate of glycolysis seen in rapidly growing cancer cells. [provided by RefSeq, Apr 2009]
Structure
Hexokinase II is one of four homologous hexokinase isoforms in mammalian cells.
= Gene
=The HK2 gene spans approximately 50 kb and consists of 18 exons. There is also an HK2 pseudogene integrated into a long interspersed nuclear repetitive DNA element located on the X chromosome. Though its DNA sequence is similar to the cDNA product of the actual HK2 mRNA transcript, it lacks an open reading frame for gene expression.
= Protein
=This gene encodes a 100-kDa, 917-residue enzyme with highly similar N-terminal and C-terminal domains that each form half of the protein. This high similarity, along with the existence of a 50-kDa hexokinase (HK4), suggests that the 100-kDa hexokinases originated from a 50-kDa precursor via gene duplication and tandem ligation. Both N- and C-terminal domains possess catalytic ability and can be inhibited by glucose 6-phosphate, though the C-terminal domain demonstrates lower affinity for ATP and is only inhibited at higher concentrations of glucose 6-phosphate. Despite there being two binding sites for glucose, it is proposed that glucose binding at one site induces a conformational change which prevents a second glucose from binding the other site. Meanwhile, the first 12 amino acids of the highly hydrophobic N-terminal serve to bind the enzyme to the mitochondria, while the first 18 amino acids contribute to the enzyme’s stability.
Function
As an isoform of hexokinase and a member of the sugar kinase family, hexokinase II catalyzes the rate-limiting and first obligatory step of glucose metabolism, which is the ATP-dependent phosphorylation of glucose to glucose 6-phosphate. Physiological levels of glucose 6-phosphate can regulate this process by inhibiting hexokinase II as negative feedback, though inorganic phosphate (Pi) can relieve glucose 6-phosphate inhibition. Pi can also directly regulate hexokinase II, and the double regulation may better suit its anabolic functions. By phosphorylating glucose, hexokinase II effectively prevents glucose from leaving the cell and, thus, commits glucose to energy metabolism. Moreover, its localization and attachment to the OMM promotes the coupling of glycolysis to mitochondrial oxidative phosphorylation, which greatly enhances ATP production to meet the cell’s energy demands. Specifically, hexokinase II binds VDAC to trigger opening of the channel and release mitochondrial ATP to further fuel the glycolytic process.
Another critical function for OMM-bound hexokinase II is mediation of cell survival. Activation of Akt kinase maintains HK2-VDAC coupling, which subsequently prevents cytochrome c release and apoptosis, though the exact mechanism remains to be confirmed. One model proposes that hexokinase II competes with the pro-apoptotic proteins BAX to bind VDAC, and in the absence of hexokinase II, BAX induces cytochrome c release. In fact, there is evidence that hexokinase II restricts BAX and BAK oligomerization and binding to the OMM. In a similar mechanism, the pro-apoptotic creatine kinase binds and opens VDAC in the absence of hexokinase II. An alternative model proposes the opposite, that hexokinase II regulates binding of the anti-apoptotic protein Bcl-Xl to VDAC.
In particular, hexokinase II is ubiquitously expressed in tissues, though it is majorly found in muscle and adipose tissue. In cardiac and skeletal muscle, hexokinase II can be found bound to both the mitochondrial and sarcoplasmic membrane. HK2 gene expression is regulated by a phosphatidylinositol 3-kinaselp70 S6 protein kinase-dependent pathway and can be induced by factors such as insulin, hypoxia, cold temperatures, and exercise. Its inducible expression indicates its adaptive role in metabolic responses to changes in the cellular environment.
Clinical significance
= Cancer
=Hexokinase II is highly expressed in several cancers, including breast cancer and colon cancer. Its role in coupling ATP from oxidative phosphorylation to the rate-limiting step of glycolysis may help drive the tumor cells’ growth. Notably, inhibition of hexokinase II has demonstrably improved the effectiveness of anticancer drugs., Thus, hexokinase II stands as a promising therapeutic target, though considering its ubiquitous expression and crucial role in energy metabolism, a reduction rather than complete inhibition of its activity should be pursued.
= Non-insulin-dependent diabetes mellitus
=A study on non-insulin-dependent diabetes mellitus (NIDDM) revealed low basal glucose 6-phosphate levels in NIDDM patients that failed to increase with the addition of insulin. One possible cause is decreased phosphorylation of glucose due to a defect in hexokinase II, which was confirmed in further experiments. However, the study could not establish any links between NIDDM and mutations in the HK2 gene, indicating that the defect may lie in hexokinase II regulation.
Interactions
HK2 is known to interact with:
VDAC.
Interactive pathway map
Click on genes, proteins and metabolites below to link to respective articles.
See also
Hexokinase
Hexokinase I
Hexokinase III
Glucokinase
References
Further reading
External links
Overview of all the structural information available in the PDB for UniProt: P52789 (Hexokinase-2) at the PDBe-KB.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.