• Source: Hyperstructure
  • Hyperstructures are algebraic structures equipped with at least one multi-valued operation, called a hyperoperation. The largest classes of the hyperstructures are the ones called



    H
    v


    {\displaystyle Hv}

    – structures.
    A hyperoperation



    (

    )


    {\displaystyle (\star )}

    on a nonempty set



    H


    {\displaystyle H}

    is a mapping from



    H
    ×
    H


    {\displaystyle H\times H}

    to the nonempty power set




    P





    (
    H
    )


    {\displaystyle P^{*}\!(H)}

    , meaning the set of all nonempty subsets of



    H


    {\displaystyle H}

    , i.e.





    :
    H
    ×
    H


    P





    (
    H
    )


    {\displaystyle \star :H\times H\to P^{*}\!(H)}







    (
    x
    ,
    y
    )

    x

    y

    H
    .


    {\displaystyle \quad \ (x,y)\mapsto x\star y\subseteq H.}


    For



    A
    ,
    B

    H


    {\displaystyle A,B\subseteq H}

    we define




    A

    B
    =



    a

    A
    ,

    b

    B


    a

    b


    {\displaystyle A\star B=\bigcup _{a\in A,\,b\in B}a\star b}

    and



    A

    x
    =
    A

    {
    x
    }
    ,



    {\displaystyle A\star x=A\star \{x\},\,}





    x

    B
    =
    {
    x
    }

    B
    .


    {\displaystyle x\star B=\{x\}\star B.}





    (
    H
    ,

    )


    {\displaystyle (H,\star )}

    is a semihypergroup if



    (

    )


    {\displaystyle (\star )}

    is an associative hyperoperation, i.e.



    x

    (
    y

    z
    )
    =
    (
    x

    y
    )

    z


    {\displaystyle x\star (y\star z)=(x\star y)\star z}

    for all



    x
    ,
    y
    ,
    z

    H
    .


    {\displaystyle x,y,z\in H.}


    Furthermore, a hypergroup is a semihypergroup



    (
    H
    ,

    )


    {\displaystyle (H,\star )}

    , where the reproduction axiom is valid, i.e.




    a

    H
    =
    H

    a
    =
    H


    {\displaystyle a\star H=H\star a=H}

    for all



    a

    H
    .


    {\displaystyle a\in H.}



    References



    AHA (Algebraic Hyperstructures & Applications). A scientific group at Democritus University of Thrace, School of Education, Greece. aha.eled.duth.gr
    Applications of Hyperstructure Theory, Piergiulio Corsini, Violeta Leoreanu, Springer, 2003, ISBN 1-4020-1222-5, ISBN 978-1-4020-1222-8
    Functional Equations on Hypergroups, László, Székelyhidi, World Scientific Publishing, 2012, ISBN 978-981-4407-00-7

Kata Kunci Pencarian: