- Source: Igusa zeta function
In mathematics, an Igusa zeta function is a type of generating function, counting the number of solutions of an equation, modulo p, p2, p3, and so on.
Definition
For a prime number p let K be a p-adic field, i.e.
[
K
:
Q
p
]
<
∞
{\displaystyle [K:\mathbb {Q} _{p}]<\infty }
, R the valuation ring and P the maximal ideal. For
z
∈
K
{\displaystyle z\in K}
we denote by
ord
(
z
)
{\displaystyle \operatorname {ord} (z)}
the valuation of z,
∣
z
∣=
q
−
ord
(
z
)
{\displaystyle \mid z\mid =q^{-\operatorname {ord} (z)}}
, and
a
c
(
z
)
=
z
π
−
ord
(
z
)
{\displaystyle ac(z)=z\pi ^{-\operatorname {ord} (z)}}
for a uniformizing parameter π of R.
Furthermore let
ϕ
:
K
n
→
C
{\displaystyle \phi :K^{n}\to \mathbb {C} }
be a Schwartz–Bruhat function, i.e. a locally constant function with compact support and let
χ
{\displaystyle \chi }
be a character of
R
×
{\displaystyle R^{\times }}
.
In this situation one associates to a non-constant polynomial
f
(
x
1
,
…
,
x
n
)
∈
K
[
x
1
,
…
,
x
n
]
{\displaystyle f(x_{1},\ldots ,x_{n})\in K[x_{1},\ldots ,x_{n}]}
the Igusa zeta function
Z
ϕ
(
s
,
χ
)
=
∫
K
n
ϕ
(
x
1
,
…
,
x
n
)
χ
(
a
c
(
f
(
x
1
,
…
,
x
n
)
)
)
|
f
(
x
1
,
…
,
x
n
)
|
s
d
x
{\displaystyle Z_{\phi }(s,\chi )=\int _{K^{n}}\phi (x_{1},\ldots ,x_{n})\chi (ac(f(x_{1},\ldots ,x_{n})))|f(x_{1},\ldots ,x_{n})|^{s}\,dx}
where
s
∈
C
,
Re
(
s
)
>
0
,
{\displaystyle s\in \mathbb {C} ,\operatorname {Re} (s)>0,}
and dx is Haar measure so normalized that
R
n
{\displaystyle R^{n}}
has measure 1.
Igusa's theorem
Jun-Ichi Igusa (1974) showed that
Z
ϕ
(
s
,
χ
)
{\displaystyle Z_{\phi }(s,\chi )}
is a rational function in
t
=
q
−
s
{\displaystyle t=q^{-s}}
. The proof uses Heisuke Hironaka's theorem about the resolution of singularities. Later, an entirely different proof was given by Jan Denef using p-adic cell decomposition. Little is known, however, about explicit formulas. (There are some results about Igusa zeta functions of Fermat varieties.)
Congruences modulo powers of P
Henceforth we take
ϕ
{\displaystyle \phi }
to be the characteristic function of
R
n
{\displaystyle R^{n}}
and
χ
{\displaystyle \chi }
to be the trivial character. Let
N
i
{\displaystyle N_{i}}
denote the number of solutions of the congruence
f
(
x
1
,
…
,
x
n
)
≡
0
mod
P
i
{\displaystyle f(x_{1},\ldots ,x_{n})\equiv 0\mod P^{i}}
.
Then the Igusa zeta function
Z
(
t
)
=
∫
R
n
|
f
(
x
1
,
…
,
x
n
)
|
s
d
x
{\displaystyle Z(t)=\int _{R^{n}}|f(x_{1},\ldots ,x_{n})|^{s}\,dx}
is closely related to the Poincaré series
P
(
t
)
=
∑
i
=
0
∞
q
−
i
n
N
i
t
i
{\displaystyle P(t)=\sum _{i=0}^{\infty }q^{-in}N_{i}t^{i}}
by
P
(
t
)
=
1
−
t
Z
(
t
)
1
−
t
.
{\displaystyle P(t)={\frac {1-tZ(t)}{1-t}}.}
References
Igusa, Jun-Ichi (1974), "Complex powers and asymptotic expansions. I. Functions of certain types", Journal für die reine und angewandte Mathematik, 1974 (268–269): 110–130, doi:10.1515/crll.1974.268-269.110, Zbl 0287.43007
Information for this article was taken from J. Denef, Report on Igusa's Local Zeta Function, Séminaire Bourbaki 43 (1990-1991), exp. 741; Astérisque 201-202-203 (1991), 359-386
Kata Kunci Pencarian:
- List of zeta functions
- Igusa zeta function
- Jun-Ichi Igusa
- Glossary of arithmetic and diophantine geometry
- François Loeser
- Period (algebraic geometry)
- Prakash Belkale
- Jan Denef
- Margaret M. Robinson
- Séminaire Nicolas Bourbaki (1950–1959)