- Source: Incomplete polylogarithm
In mathematics, the Incomplete Polylogarithm function is related to the polylogarithm function. It is sometimes known as the incomplete Fermi–Dirac integral or the incomplete Bose–Einstein integral. It may be defined by:
Li
s
(
b
,
z
)
=
1
Γ
(
s
)
∫
b
∞
x
s
−
1
e
x
/
z
−
1
d
x
.
{\displaystyle \operatorname {Li} _{s}(b,z)={\frac {1}{\Gamma (s)}}\int _{b}^{\infty }{\frac {x^{s-1}}{e^{x}/z-1}}~dx.}
Expanding about z=0 and integrating gives a series representation:
Li
s
(
b
,
z
)
=
∑
k
=
1
∞
z
k
k
s
Γ
(
s
,
k
b
)
Γ
(
s
)
{\displaystyle \operatorname {Li} _{s}(b,z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{s}}}~{\frac {\Gamma (s,kb)}{\Gamma (s)}}}
where Γ(s) is the gamma function and Γ(s,x) is the upper incomplete gamma function. Since Γ(s,0)=Γ(s), it follows that:
Li
s
(
0
,
z
)
=
Li
s
(
z
)
{\displaystyle \operatorname {Li} _{s}(0,z)=\operatorname {Li} _{s}(z)}
where Lis(.) is the polylogarithm function.
References
GNU Scientific Library - Reference Manual https://www.gnu.org/software/gsl/manual/gsl-ref.html#SEC117
Kata Kunci Pencarian:
- Incomplete polylogarithm
- Polylogarithm
- Incomplete Fermi–Dirac integral
- List of mathematical functions
- Sakuma–Hattori equation
- Complete Fermi–Dirac integral
- Lerch transcendent
- Riemann zeta function
- Debye function
- List of integrals of exponential functions