• Source: Indefinite product
    • In mathematics, the indefinite product operator is the inverse operator of



      Q
      (
      f
      (
      x
      )
      )
      =



      f
      (
      x
      +
      1
      )


      f
      (
      x
      )





      {\textstyle Q(f(x))={\frac {f(x+1)}{f(x)}}}

      . It is a discrete version of the geometric integral of geometric calculus, one of the non-Newtonian calculi.
      Thus




      Q

      (




      x


      f
      (
      x
      )

      )

      =
      f
      (
      x
      )

      .


      {\displaystyle Q\left(\prod _{x}f(x)\right)=f(x)\,.}


      More explicitly, if






      x


      f
      (
      x
      )
      =
      F
      (
      x
      )


      {\textstyle \prod _{x}f(x)=F(x)}

      , then







      F
      (
      x
      +
      1
      )


      F
      (
      x
      )



      =
      f
      (
      x
      )

      .


      {\displaystyle {\frac {F(x+1)}{F(x)}}=f(x)\,.}


      If F(x) is a solution of this functional equation for a given f(x), then so is CF(x) for any constant C. Therefore, each indefinite product actually represents a family of functions, differing by a multiplicative constant.


      Period rule


      If



      T


      {\displaystyle T}

      is a period of function



      f
      (
      x
      )


      {\displaystyle f(x)}

      then







      x


      f
      (
      T
      x
      )
      =
      C
      f
      (
      T
      x

      )

      x

      1




      {\displaystyle \prod _{x}f(Tx)=Cf(Tx)^{x-1}}



      Connection to indefinite sum


      Indefinite product can be expressed in terms of indefinite sum:







      x


      f
      (
      x
      )
      =
      exp


      (




      x


      ln

      f
      (
      x
      )

      )



      {\displaystyle \prod _{x}f(x)=\exp \left(\sum _{x}\ln f(x)\right)}



      Alternative usage


      Some authors use the phrase "indefinite product" in a slightly different but related way to describe a product in which the numerical value of the upper limit is not given. e.g.







      k
      =
      1


      n


      f
      (
      k
      )


      {\displaystyle \prod _{k=1}^{n}f(k)}

      .


      Rules









      x


      f
      (
      x
      )
      g
      (
      x
      )
      =



      x


      f
      (
      x
      )



      x


      g
      (
      x
      )


      {\displaystyle \prod _{x}f(x)g(x)=\prod _{x}f(x)\prod _{x}g(x)}








      x


      f
      (
      x

      )

      a


      =


      (




      x


      f
      (
      x
      )

      )


      a




      {\displaystyle \prod _{x}f(x)^{a}=\left(\prod _{x}f(x)\right)^{a}}








      x



      a

      f
      (
      x
      )


      =

      a




      x


      f
      (
      x
      )




      {\displaystyle \prod _{x}a^{f(x)}=a^{\sum _{x}f(x)}}



      List of indefinite products


      This is a list of indefinite products






      x


      f
      (
      x
      )


      {\textstyle \prod _{x}f(x)}

      . Not all functions have an indefinite product which can be expressed in elementary functions.







      x


      a
      =
      C

      a

      x




      {\displaystyle \prod _{x}a=Ca^{x}}








      x


      x
      =
      C

      Γ
      (
      x
      )


      {\displaystyle \prod _{x}x=C\,\Gamma (x)}








      x





      x
      +
      1

      x


      =
      C
      x


      {\displaystyle \prod _{x}{\frac {x+1}{x}}=Cx}








      x





      x
      +
      a

      x


      =



      C

      Γ
      (
      x
      +
      a
      )


      Γ
      (
      x
      )





      {\displaystyle \prod _{x}{\frac {x+a}{x}}={\frac {C\,\Gamma (x+a)}{\Gamma (x)}}}








      x



      x

      a


      =
      C

      Γ
      (
      x

      )

      a




      {\displaystyle \prod _{x}x^{a}=C\,\Gamma (x)^{a}}








      x


      a
      x
      =
      C

      a

      x


      Γ
      (
      x
      )


      {\displaystyle \prod _{x}ax=Ca^{x}\Gamma (x)}








      x



      a

      x


      =
      C

      a



      x
      2


      (
      x

      1
      )




      {\displaystyle \prod _{x}a^{x}=Ca^{{\frac {x}{2}}(x-1)}}








      x



      a


      1
      x



      =
      C

      a




      Γ


      (
      x
      )


      Γ
      (
      x
      )






      {\displaystyle \prod _{x}a^{\frac {1}{x}}=Ca^{\frac {\Gamma '(x)}{\Gamma (x)}}}








      x



      x

      x


      =
      C


      e


      ζ




      (

      1
      ,
      x
      )


      ζ




      (

      1
      )


      =
      C


      e


      ψ

      (

      2
      )


      (
      z
      )
      +




      z

      2



      z

      2





      z
      2


      ln

      (
      2
      π
      )


      =
      C

      K

      (
      x
      )


      {\displaystyle \prod _{x}x^{x}=C\,e^{\zeta ^{\prime }(-1,x)-\zeta ^{\prime }(-1)}=C\,e^{\psi ^{(-2)}(z)+{\frac {z^{2}-z}{2}}-{\frac {z}{2}}\ln(2\pi )}=C\,\operatorname {K} (x)}


      (see K-function)







      x


      Γ
      (
      x
      )
      =



      C

      Γ
      (
      x

      )

      x

      1




      K

      (
      x
      )



      =
      C

      Γ
      (
      x

      )

      x

      1



      e



      z
      2


      ln

      (
      2
      π
      )





      z

      2



      z

      2




      ψ

      (

      2
      )


      (
      z
      )


      =
      C

      G

      (
      x
      )


      {\displaystyle \prod _{x}\Gamma (x)={\frac {C\,\Gamma (x)^{x-1}}{\operatorname {K} (x)}}=C\,\Gamma (x)^{x-1}e^{{\frac {z}{2}}\ln(2\pi )-{\frac {z^{2}-z}{2}}-\psi ^{(-2)}(z)}=C\,\operatorname {G} (x)}


      (see Barnes G-function)







      x



      sexp

      a



      (
      x
      )
      =



      C

      (

      sexp

      a



      (
      x
      )

      )





      sexp

      a



      (
      x
      )
      (
      ln

      a

      )

      x







      {\displaystyle \prod _{x}\operatorname {sexp} _{a}(x)={\frac {C\,(\operatorname {sexp} _{a}(x))'}{\operatorname {sexp} _{a}(x)(\ln a)^{x}}}}


      (see super-exponential function)







      x


      x
      +
      a
      =
      C

      Γ
      (
      x
      +
      a
      )


      {\displaystyle \prod _{x}x+a=C\,\Gamma (x+a)}








      x


      a
      x
      +
      b
      =
      C


      a

      x


      Γ

      (

      x
      +


      b
      a



      )



      {\displaystyle \prod _{x}ax+b=C\,a^{x}\Gamma \left(x+{\frac {b}{a}}\right)}








      x


      a

      x

      2


      +
      b
      x
      =
      C


      a

      x


      Γ
      (
      x
      )
      Γ

      (

      x
      +


      b
      a



      )



      {\displaystyle \prod _{x}ax^{2}+bx=C\,a^{x}\Gamma (x)\Gamma \left(x+{\frac {b}{a}}\right)}








      x



      x

      2


      +
      1
      =
      C

      Γ
      (
      x

      i
      )
      Γ
      (
      x
      +
      i
      )


      {\displaystyle \prod _{x}x^{2}+1=C\,\Gamma (x-i)\Gamma (x+i)}








      x


      x
      +


      1
      x


      =



      C

      Γ
      (
      x

      i
      )
      Γ
      (
      x
      +
      i
      )


      Γ
      (
      x
      )





      {\displaystyle \prod _{x}x+{\frac {1}{x}}={\frac {C\,\Gamma (x-i)\Gamma (x+i)}{\Gamma (x)}}}








      x


      csc

      x
      sin

      (
      x
      +
      1
      )
      =
      C
      sin

      x


      {\displaystyle \prod _{x}\csc x\sin(x+1)=C\sin x}








      x


      sec

      x
      cos

      (
      x
      +
      1
      )
      =
      C
      cos

      x


      {\displaystyle \prod _{x}\sec x\cos(x+1)=C\cos x}








      x


      cot

      x
      tan

      (
      x
      +
      1
      )
      =
      C
      tan

      x


      {\displaystyle \prod _{x}\cot x\tan(x+1)=C\tan x}








      x


      tan

      x
      cot

      (
      x
      +
      1
      )
      =
      C
      cot

      x


      {\displaystyle \prod _{x}\tan x\cot(x+1)=C\cot x}



      See also


      Indefinite sum
      Product integral
      List of derivatives and integrals in alternative calculi
      Fractal derivative


      References




      Further reading


      http://reference.wolfram.com/mathematica/ref/Product.html -Indefinite products with Mathematica
      [1] - bug in Maple V to Maple 8 handling of indefinite product
      Markus Müller. How to Add a Non-Integer Number of Terms, and How to Produce Unusual Infinite Summations
      Markus Mueller, Dierk Schleicher. Fractional Sums and Euler-like Identities


      External links


      Non-Newtonian calculus website

    Kata Kunci Pencarian: