• Source: Kaprekar number
    • In mathematics, a natural number in a given number base is a



      p


      {\displaystyle p}

      -Kaprekar number if the representation of its square in that base can be split into two parts, where the second part has



      p


      {\displaystyle p}

      digits, that add up to the original number. For example, in base 10, 45 is a 2-Kaprekar number, because 45² = 2025, and 20 + 25 = 45. The numbers are named after D. R. Kaprekar.


      Definition and properties


      Let



      n


      {\displaystyle n}

      be a natural number. Then the Kaprekar function for base



      b
      >
      1


      {\displaystyle b>1}

      and power



      p
      >
      0


      {\displaystyle p>0}






      F

      p
      ,
      b


      :

      N



      N



      {\displaystyle F_{p,b}:\mathbb {N} \rightarrow \mathbb {N} }

      is defined to be the following:





      F

      p
      ,
      b


      (
      n
      )
      =
      α
      +
      β


      {\displaystyle F_{p,b}(n)=\alpha +\beta }

      ,
      where



      β
      =

      n

      2




      mod

      b



      p




      {\displaystyle \beta =n^{2}{\bmod {b}}^{p}}

      and




      α
      =




      n

      2



      β


      b

      p






      {\displaystyle \alpha ={\frac {n^{2}-\beta }{b^{p}}}}


      A natural number



      n


      {\displaystyle n}

      is a



      p


      {\displaystyle p}

      -Kaprekar number if it is a fixed point for




      F

      p
      ,
      b




      {\displaystyle F_{p,b}}

      , which occurs if




      F

      p
      ,
      b


      (
      n
      )
      =
      n


      {\displaystyle F_{p,b}(n)=n}

      .



      0


      {\displaystyle 0}

      and



      1


      {\displaystyle 1}

      are trivial Kaprekar numbers for all



      b


      {\displaystyle b}

      and



      p


      {\displaystyle p}

      , all other Kaprekar numbers are nontrivial Kaprekar numbers.
      The earlier example of 45 satisfies this definition with



      b
      =
      10


      {\displaystyle b=10}

      and



      p
      =
      2


      {\displaystyle p=2}

      , because




      β
      =

      n

      2




      mod

      b



      p


      =

      45

      2



      mod

      1



      0

      2


      =
      25


      {\displaystyle \beta =n^{2}{\bmod {b}}^{p}=45^{2}{\bmod {1}}0^{2}=25}





      α
      =




      n

      2



      β


      b

      p




      =




      45

      2



      25


      10

      2




      =
      20


      {\displaystyle \alpha ={\frac {n^{2}-\beta }{b^{p}}}={\frac {45^{2}-25}{10^{2}}}=20}






      F

      2
      ,
      10


      (
      45
      )
      =
      α
      +
      β
      =
      20
      +
      25
      =
      45


      {\displaystyle F_{2,10}(45)=\alpha +\beta =20+25=45}


      A natural number



      n


      {\displaystyle n}

      is a sociable Kaprekar number if it is a periodic point for




      F

      p
      ,
      b




      {\displaystyle F_{p,b}}

      , where




      F

      p
      ,
      b


      k


      (
      n
      )
      =
      n


      {\displaystyle F_{p,b}^{k}(n)=n}

      for a positive integer



      k


      {\displaystyle k}

      (where




      F

      p
      ,
      b


      k




      {\displaystyle F_{p,b}^{k}}

      is the



      k


      {\displaystyle k}

      th iterate of




      F

      p
      ,
      b




      {\displaystyle F_{p,b}}

      ), and forms a cycle of period



      k


      {\displaystyle k}

      . A Kaprekar number is a sociable Kaprekar number with



      k
      =
      1


      {\displaystyle k=1}

      , and a amicable Kaprekar number is a sociable Kaprekar number with



      k
      =
      2


      {\displaystyle k=2}

      .
      The number of iterations



      i


      {\displaystyle i}

      needed for




      F

      p
      ,
      b


      i


      (
      n
      )


      {\displaystyle F_{p,b}^{i}(n)}

      to reach a fixed point is the Kaprekar function's persistence of



      n


      {\displaystyle n}

      , and undefined if it never reaches a fixed point.
      There are only a finite number of



      p


      {\displaystyle p}

      -Kaprekar numbers and cycles for a given base



      b


      {\displaystyle b}

      , because if



      n
      =

      b

      p


      +
      m


      {\displaystyle n=b^{p}+m}

      , where



      m
      >
      0


      {\displaystyle m>0}

      then









      n

      2





      =
      (

      b

      p


      +
      m

      )

      2








      =

      b

      2
      p


      +
      2
      m

      b

      p


      +

      m

      2








      =
      (

      b

      p


      +
      2
      m
      )

      b

      p


      +

      m

      2








      {\displaystyle {\begin{aligned}n^{2}&=(b^{p}+m)^{2}\\&=b^{2p}+2mb^{p}+m^{2}\\&=(b^{p}+2m)b^{p}+m^{2}\\\end{aligned}}}


      and



      β
      =

      m

      2




      {\displaystyle \beta =m^{2}}

      ,



      α
      =

      b

      p


      +
      2
      m


      {\displaystyle \alpha =b^{p}+2m}

      , and




      F

      p
      ,
      b


      (
      n
      )
      =

      b

      p


      +
      2
      m
      +

      m

      2


      =
      n
      +
      (

      m

      2


      +
      m
      )
      >
      n


      {\displaystyle F_{p,b}(n)=b^{p}+2m+m^{2}=n+(m^{2}+m)>n}

      . Only when



      n


      b

      p




      {\displaystyle n\leq b^{p}}

      do Kaprekar numbers and cycles exist.
      If



      d


      {\displaystyle d}

      is any divisor of



      p


      {\displaystyle p}

      , then



      n


      {\displaystyle n}

      is also a



      p


      {\displaystyle p}

      -Kaprekar number for base




      b

      p




      {\displaystyle b^{p}}

      .
      In base



      b
      =
      2


      {\displaystyle b=2}

      , all even perfect numbers are Kaprekar numbers. More generally, any numbers of the form




      2

      n


      (

      2

      n
      +
      1



      1
      )


      {\displaystyle 2^{n}(2^{n+1}-1)}

      or




      2

      n


      (

      2

      n
      +
      1


      +
      1
      )


      {\displaystyle 2^{n}(2^{n+1}+1)}

      for natural number



      n


      {\displaystyle n}

      are Kaprekar numbers in base 2.


      = Set-theoretic definition and unitary divisors

      =
      The set



      K
      (
      N
      )


      {\displaystyle K(N)}

      for a given integer



      N


      {\displaystyle N}

      can be defined as the set of integers



      X


      {\displaystyle X}

      for which there exist natural numbers



      A


      {\displaystyle A}

      and



      B


      {\displaystyle B}

      satisfying the Diophantine equation





      X

      2


      =
      A
      N
      +
      B


      {\displaystyle X^{2}=AN+B}

      , where



      0

      B
      <
      N


      {\displaystyle 0\leq B




      X
      =
      A
      +
      B


      {\displaystyle X=A+B}


      An



      n


      {\displaystyle n}

      -Kaprekar number for base



      b


      {\displaystyle b}

      is then one which lies in the set



      K
      (

      b

      n


      )


      {\displaystyle K(b^{n})}

      .
      It was shown in 2000 that there is a bijection between the unitary divisors of



      N

      1


      {\displaystyle N-1}

      and the set



      K
      (
      N
      )


      {\displaystyle K(N)}

      defined above. Let



      Inv

      (
      a
      ,
      c
      )


      {\displaystyle \operatorname {Inv} (a,c)}

      denote the multiplicative inverse of



      a


      {\displaystyle a}

      modulo



      c


      {\displaystyle c}

      , namely the least positive integer



      m


      {\displaystyle m}

      such that



      a
      m
      =
      1

      mod

      c




      {\displaystyle am=1{\bmod {c}}}

      , and for each unitary divisor



      d


      {\displaystyle d}

      of



      N

      1


      {\displaystyle N-1}

      let



      e
      =



      N

      1

      d




      {\displaystyle e={\frac {N-1}{d}}}

      and



      ζ
      (
      d
      )
      =
      d


      Inv

      (
      d
      ,
      e
      )


      {\displaystyle \zeta (d)=d\ {\text{Inv}}(d,e)}

      . Then the function



      ζ


      {\displaystyle \zeta }

      is a bijection from the set of unitary divisors of



      N

      1


      {\displaystyle N-1}

      onto the set



      K
      (
      N
      )


      {\displaystyle K(N)}

      . In particular, a number



      X


      {\displaystyle X}

      is in the set



      K
      (
      N
      )


      {\displaystyle K(N)}

      if and only if



      X
      =
      d


      Inv

      (
      d
      ,
      e
      )


      {\displaystyle X=d\ {\text{Inv}}(d,e)}

      for some unitary divisor



      d


      {\displaystyle d}

      of



      N

      1


      {\displaystyle N-1}

      .
      The numbers in



      K
      (
      N
      )


      {\displaystyle K(N)}

      occur in complementary pairs,



      X


      {\displaystyle X}

      and



      N

      X


      {\displaystyle N-X}

      . If



      d


      {\displaystyle d}

      is a unitary divisor of



      N

      1


      {\displaystyle N-1}

      then so is



      e
      =



      N

      1

      d




      {\displaystyle e={\frac {N-1}{d}}}

      , and if



      X
      =
      d
      Inv

      (
      d
      ,
      e
      )


      {\displaystyle X=d\operatorname {Inv} (d,e)}

      then



      N

      X
      =
      e
      Inv

      (
      e
      ,
      d
      )


      {\displaystyle N-X=e\operatorname {Inv} (e,d)}

      .


      Kaprekar numbers for






      F

      p
      ,
      b




      {\displaystyle F_{p,b}}



      = b = 4k + 3 and p = 2n + 1

      =
      Let



      k


      {\displaystyle k}

      and



      n


      {\displaystyle n}

      be natural numbers, the number base



      b
      =
      4
      k
      +
      3
      =
      2
      (
      2
      k
      +
      1
      )
      +
      1


      {\displaystyle b=4k+3=2(2k+1)+1}

      , and



      p
      =
      2
      n
      +
      1


      {\displaystyle p=2n+1}

      . Then:





      X

      1


      =




      b

      p



      1

      2


      =
      (
      2
      k
      +
      1
      )



      i
      =
      0


      p

      1



      b

      i




      {\displaystyle X_{1}={\frac {b^{p}-1}{2}}=(2k+1)\sum _{i=0}^{p-1}b^{i}}

      is a Kaprekar number.





      X

      2


      =




      b

      p


      +
      1

      2


      =

      X

      1


      +
      1


      {\displaystyle X_{2}={\frac {b^{p}+1}{2}}=X_{1}+1}

      is a Kaprekar number for all natural numbers



      n


      {\displaystyle n}

      .


      = b = m2k + m + 1 and p = mn + 1

      =
      Let



      m


      {\displaystyle m}

      ,



      k


      {\displaystyle k}

      , and



      n


      {\displaystyle n}

      be natural numbers, the number base



      b
      =

      m

      2


      k
      +
      m
      +
      1


      {\displaystyle b=m^{2}k+m+1}

      , and the power



      p
      =
      m
      n
      +
      1


      {\displaystyle p=mn+1}

      . Then:





      X

      1


      =




      b

      p



      1

      m


      =
      (
      m
      k
      +
      1
      )



      i
      =
      0


      p

      1



      b

      i




      {\displaystyle X_{1}={\frac {b^{p}-1}{m}}=(mk+1)\sum _{i=0}^{p-1}b^{i}}

      is a Kaprekar number.





      X

      2


      =




      b

      p


      +
      m

      1

      m


      =

      X

      1


      +
      1


      {\displaystyle X_{2}={\frac {b^{p}+m-1}{m}}=X_{1}+1}

      is a Kaprekar number.


      = b = m2k + m + 1 and p = mn + m − 1

      =
      Let



      m


      {\displaystyle m}

      ,



      k


      {\displaystyle k}

      , and



      n


      {\displaystyle n}

      be natural numbers, the number base



      b
      =

      m

      2


      k
      +
      m
      +
      1


      {\displaystyle b=m^{2}k+m+1}

      , and the power



      p
      =
      m
      n
      +
      m

      1


      {\displaystyle p=mn+m-1}

      . Then:





      X

      1


      =



      m
      (

      b

      p



      1
      )

      4


      =
      (
      m

      1
      )
      (
      m
      k
      +
      1
      )



      i
      =
      0


      p

      1



      b

      i




      {\displaystyle X_{1}={\frac {m(b^{p}-1)}{4}}=(m-1)(mk+1)\sum _{i=0}^{p-1}b^{i}}

      is a Kaprekar number.





      X

      2


      =



      m

      b

      p


      +
      1

      4


      =

      X

      3


      +
      1


      {\displaystyle X_{2}={\frac {mb^{p}+1}{4}}=X_{3}+1}

      is a Kaprekar number.


      = b = m2k + m2 − m + 1 and p = mn + 1

      =
      Let



      m


      {\displaystyle m}

      ,



      k


      {\displaystyle k}

      , and



      n


      {\displaystyle n}

      be natural numbers, the number base



      b
      =

      m

      2


      k
      +

      m

      2



      m
      +
      1


      {\displaystyle b=m^{2}k+m^{2}-m+1}

      , and the power



      p
      =
      m
      n
      +
      m

      1


      {\displaystyle p=mn+m-1}

      . Then:





      X

      1


      =



      (
      m

      1
      )
      (

      b

      p



      1
      )

      m


      =
      (
      m

      1
      )
      (
      m
      k
      +
      1
      )



      i
      =
      0


      p

      1



      b

      i




      {\displaystyle X_{1}={\frac {(m-1)(b^{p}-1)}{m}}=(m-1)(mk+1)\sum _{i=0}^{p-1}b^{i}}

      is a Kaprekar number.





      X

      2


      =



      (
      m

      1
      )

      b

      p


      +
      1

      m


      =

      X

      1


      +
      1


      {\displaystyle X_{2}={\frac {(m-1)b^{p}+1}{m}}=X_{1}+1}

      is a Kaprekar number.


      = b = m2k + m2 − m + 1 and p = mn + m − 1

      =
      Let



      m


      {\displaystyle m}

      ,



      k


      {\displaystyle k}

      , and



      n


      {\displaystyle n}

      be natural numbers, the number base



      b
      =

      m

      2


      k
      +

      m

      2



      m
      +
      1


      {\displaystyle b=m^{2}k+m^{2}-m+1}

      , and the power



      p
      =
      m
      n
      +
      m

      1


      {\displaystyle p=mn+m-1}

      . Then:





      X

      1


      =




      b

      p



      1

      m


      =
      (
      m
      k
      +
      1
      )



      i
      =
      0


      p

      1



      b

      i




      {\displaystyle X_{1}={\frac {b^{p}-1}{m}}=(mk+1)\sum _{i=0}^{p-1}b^{i}}

      is a Kaprekar number.





      X

      2


      =




      b

      p


      +
      m

      1

      m


      =

      X

      3


      +
      1


      {\displaystyle X_{2}={\frac {b^{p}+m-1}{m}}=X_{3}+1}

      is a Kaprekar number.


      Kaprekar numbers and cycles of






      F

      p
      ,
      b




      {\displaystyle F_{p,b}}

      for specific



      p


      {\displaystyle p}

      ,



      b


      {\displaystyle b}


      All numbers are in base



      b


      {\displaystyle b}

      .


      Extension to negative integers


      Kaprekar numbers can be extended to the negative integers by use of a signed-digit representation to represent each integer.


      See also


      Arithmetic dynamics
      Automorphic number
      Dudeney number
      Factorion
      Happy number
      Kaprekar's constant
      Meertens number
      Narcissistic number
      Perfect digit-to-digit invariant
      Perfect digital invariant
      Sum-product number


      Notes




      References


      D. R. Kaprekar (1980–1981). "On Kaprekar numbers". Journal of Recreational Mathematics. 13: 81–82.
      M. Charosh (1981–1982). "Some Applications of Casting Out 999...'s". Journal of Recreational Mathematics. 14: 111–118.
      Iannucci, Douglas E. (2000). "The Kaprekar Numbers". Journal of Integer Sequences. 3: 00.1.2. Bibcode:2000JIntS...3...12I.

    Kata Kunci Pencarian: