- Source: Lah number
In mathematics, the (signed and unsigned) Lah numbers are coefficients expressing rising factorials in terms of falling factorials and vice versa. They were discovered by Ivo Lah in 1954. Explicitly, the unsigned Lah numbers
L
(
n
,
k
)
{\displaystyle L(n,k)}
are given by the formula involving the binomial coefficient
L
(
n
,
k
)
=
(
n
−
1
k
−
1
)
n
!
k
!
{\displaystyle L(n,k)={n-1 \choose k-1}{\frac {n!}{k!}}}
for
n
≥
k
≥
1
{\displaystyle n\geq k\geq 1}
.
Unsigned Lah numbers have an interesting meaning in combinatorics: they count the number of ways a set of
n
{\textstyle n}
elements can be partitioned into
k
{\textstyle k}
nonempty linearly ordered subsets. Lah numbers are related to Stirling numbers.
For
n
≥
1
{\textstyle n\geq 1}
, the Lah number
L
(
n
,
1
)
{\textstyle L(n,1)}
is equal to the factorial
n
!
{\textstyle n!}
in the interpretation above, the only partition of
{
1
,
2
,
3
}
{\textstyle \{1,2,3\}}
into 1 set can have its set ordered in 6 ways:
{
(
1
,
2
,
3
)
}
,
{
(
1
,
3
,
2
)
}
,
{
(
2
,
1
,
3
)
}
,
{
(
2
,
3
,
1
)
}
,
{
(
3
,
1
,
2
)
}
,
{
(
3
,
2
,
1
)
}
{\displaystyle \{(1,2,3)\},\{(1,3,2)\},\{(2,1,3)\},\{(2,3,1)\},\{(3,1,2)\},\{(3,2,1)\}}
L
(
3
,
2
)
{\textstyle L(3,2)}
is equal to 6, because there are six partitions of
{
1
,
2
,
3
}
{\textstyle \{1,2,3\}}
into two ordered parts:
{
1
,
(
2
,
3
)
}
,
{
1
,
(
3
,
2
)
}
,
{
2
,
(
1
,
3
)
}
,
{
2
,
(
3
,
1
)
}
,
{
3
,
(
1
,
2
)
}
,
{
3
,
(
2
,
1
)
}
{\displaystyle \{1,(2,3)\},\{1,(3,2)\},\{2,(1,3)\},\{2,(3,1)\},\{3,(1,2)\},\{3,(2,1)\}}
L
(
n
,
n
)
{\textstyle L(n,n)}
is always 1 because the only way to partition
{
1
,
2
,
…
,
n
}
{\textstyle \{1,2,\ldots ,n\}}
into
n
{\displaystyle n}
non-empty subsets results in subsets of size 1, that can only be permuted in one way.
In the more recent literature, Karamata–Knuth style notation has taken over. Lah numbers are now often written as
L
(
n
,
k
)
=
⌊
n
k
⌋
{\displaystyle L(n,k)=\left\lfloor {n \atop k}\right\rfloor }
Table of values
Below is a table of values for the Lah numbers:
The row sums are
1
,
1
,
3
,
13
,
73
,
501
,
4051
,
37633
,
…
{\textstyle 1,1,3,13,73,501,4051,37633,\dots }
(sequence A000262 in the OEIS).
Rising and falling factorials
Let
x
(
n
)
{\textstyle x^{(n)}}
represent the rising factorial
x
(
x
+
1
)
(
x
+
2
)
⋯
(
x
+
n
−
1
)
{\textstyle x(x+1)(x+2)\cdots (x+n-1)}
and let
(
x
)
n
{\textstyle (x)_{n}}
represent the falling factorial
x
(
x
−
1
)
(
x
−
2
)
⋯
(
x
−
n
+
1
)
{\textstyle x(x-1)(x-2)\cdots (x-n+1)}
. The Lah numbers are the coefficients that express each of these families of polynomials in terms of the other. Explicitly,
x
(
n
)
=
∑
k
=
0
n
L
(
n
,
k
)
(
x
)
k
{\displaystyle x^{(n)}=\sum _{k=0}^{n}L(n,k)(x)_{k}}
and
(
x
)
n
=
∑
k
=
0
n
(
−
1
)
n
−
k
L
(
n
,
k
)
x
(
k
)
.
{\displaystyle (x)_{n}=\sum _{k=0}^{n}(-1)^{n-k}L(n,k)x^{(k)}.}
For example,
x
(
x
+
1
)
(
x
+
2
)
=
6
x
+
6
x
(
x
−
1
)
+
1
x
(
x
−
1
)
(
x
−
2
)
{\displaystyle x(x+1)(x+2)={\color {red}6}x+{\color {red}6}x(x-1)+{\color {red}1}x(x-1)(x-2)}
and
x
(
x
−
1
)
(
x
−
2
)
=
6
x
−
6
x
(
x
+
1
)
+
1
x
(
x
+
1
)
(
x
+
2
)
,
{\displaystyle x(x-1)(x-2)={\color {red}6}x-{\color {red}6}x(x+1)+{\color {red}1}x(x+1)(x+2),}
where the coefficients 6, 6, and 1 are exactly the Lah numbers
L
(
3
,
1
)
{\displaystyle L(3,1)}
,
L
(
3
,
2
)
{\displaystyle L(3,2)}
, and
L
(
3
,
3
)
{\displaystyle L(3,3)}
.
Identities and relations
The Lah numbers satisfy a variety of identities and relations.
In Karamata–Knuth notation for Stirling numbers
L
(
n
,
k
)
=
∑
j
=
k
n
[
n
j
]
{
j
k
}
{\displaystyle L(n,k)=\sum _{j=k}^{n}\left[{n \atop j}\right]\left\{{j \atop k}\right\}}
where
[
n
j
]
{\textstyle \left[{n \atop j}\right]}
are the unsigned Stirling numbers of the first kind and
{
j
k
}
{\textstyle \left\{{j \atop k}\right\}}
are the Stirling numbers of the second kind.
L
(
n
,
k
)
=
(
n
−
1
k
−
1
)
n
!
k
!
=
(
n
k
)
(
n
−
1
)
!
(
k
−
1
)
!
=
(
n
k
)
(
n
−
1
k
−
1
)
(
n
−
k
)
!
{\displaystyle L(n,k)={n-1 \choose k-1}{\frac {n!}{k!}}={n \choose k}{\frac {(n-1)!}{(k-1)!}}={n \choose k}{n-1 \choose k-1}(n-k)!}
L
(
n
,
k
)
=
n
!
(
n
−
1
)
!
k
!
(
k
−
1
)
!
⋅
1
(
n
−
k
)
!
=
(
n
!
k
!
)
2
k
n
(
n
−
k
)
!
{\displaystyle L(n,k)={\frac {n!(n-1)!}{k!(k-1)!}}\cdot {\frac {1}{(n-k)!}}=\left({\frac {n!}{k!}}\right)^{2}{\frac {k}{n(n-k)!}}}
k
(
k
+
1
)
L
(
n
,
k
+
1
)
=
(
n
−
k
)
L
(
n
,
k
)
{\displaystyle k(k+1)L(n,k+1)=(n-k)L(n,k)}
, for
k
>
0
{\displaystyle k>0}
.
= Recurrence relations
=The Lah numbers satisfy the recurrence relations
L
(
n
+
1
,
k
)
=
(
n
+
k
)
L
(
n
,
k
)
+
L
(
n
,
k
−
1
)
=
k
(
k
+
1
)
L
(
n
,
k
+
1
)
+
2
k
L
(
n
,
k
)
+
L
(
n
,
k
−
1
)
{\displaystyle {\begin{aligned}L(n+1,k)&=(n+k)L(n,k)+L(n,k-1)\\&=k(k+1)L(n,k+1)+2kL(n,k)+L(n,k-1)\end{aligned}}}
where
L
(
n
,
0
)
=
δ
n
{\displaystyle L(n,0)=\delta _{n}}
, the Kronecker delta, and
L
(
n
,
k
)
=
0
{\displaystyle L(n,k)=0}
for all
k
>
n
{\displaystyle k>n}
.
= Exponential generating function
=∑
n
≥
k
L
(
n
,
k
)
x
n
n
!
=
1
k
!
(
x
1
−
x
)
k
{\displaystyle \sum _{n\geq k}L(n,k){\frac {x^{n}}{n!}}={\frac {1}{k!}}\left({\frac {x}{1-x}}\right)^{k}}
= Derivative of exp(1/x)
=The n-th derivative of the function
e
1
x
{\displaystyle e^{\frac {1}{x}}}
can be expressed with the Lah numbers, as follows
d
n
d
x
n
e
1
x
=
(
−
1
)
n
∑
k
=
1
n
L
(
n
,
k
)
x
n
+
k
⋅
e
1
x
.
{\displaystyle {\frac {{\textrm {d}}^{n}}{{\textrm {d}}x^{n}}}e^{\frac {1}{x}}=(-1)^{n}\sum _{k=1}^{n}{\frac {L(n,k)}{x^{n+k}}}\cdot e^{\frac {1}{x}}.}
For example,
d
d
x
e
1
x
=
−
1
x
2
⋅
e
1
x
{\displaystyle {\frac {\textrm {d}}{{\textrm {d}}x}}e^{\frac {1}{x}}=-{\frac {1}{x^{2}}}\cdot e^{\frac {1}{x}}}
d
2
d
x
2
e
1
x
=
d
d
x
(
−
1
x
2
e
1
x
)
=
−
−
2
x
3
⋅
e
1
x
−
1
x
2
⋅
−
1
x
2
⋅
e
1
x
=
(
2
x
3
+
1
x
4
)
⋅
e
1
x
{\displaystyle {\frac {{\textrm {d}}^{2}}{{\textrm {d}}x^{2}}}e^{\frac {1}{x}}={\frac {\textrm {d}}{{\textrm {d}}x}}\left(-{\frac {1}{x^{2}}}e^{\frac {1}{x}}\right)=-{\frac {-2}{x^{3}}}\cdot e^{\frac {1}{x}}-{\frac {1}{x^{2}}}\cdot {\frac {-1}{x^{2}}}\cdot e^{\frac {1}{x}}=\left({\frac {2}{x^{3}}}+{\frac {1}{x^{4}}}\right)\cdot e^{\frac {1}{x}}}
d
3
d
x
3
e
1
x
=
d
d
x
(
(
2
x
3
+
1
x
4
)
⋅
e
1
x
)
=
(
−
6
x
4
+
−
4
x
5
)
⋅
e
1
x
+
(
2
x
3
+
1
x
4
)
⋅
−
1
x
2
⋅
e
1
x
=
−
(
6
x
4
+
6
x
5
+
1
x
6
)
⋅
e
1
x
{\displaystyle {\frac {{\textrm {d}}^{3}}{{\textrm {d}}x^{3}}}e^{\frac {1}{x}}={\frac {\textrm {d}}{{\textrm {d}}x}}\left(\left({\frac {2}{x^{3}}}+{\frac {1}{x^{4}}}\right)\cdot e^{\frac {1}{x}}\right)=\left({\frac {-6}{x^{4}}}+{\frac {-4}{x^{5}}}\right)\cdot e^{\frac {1}{x}}+\left({\frac {2}{x^{3}}}+{\frac {1}{x^{4}}}\right)\cdot {\frac {-1}{x^{2}}}\cdot e^{\frac {1}{x}}=-\left({\frac {6}{x^{4}}}+{\frac {6}{x^{5}}}+{\frac {1}{x^{6}}}\right)\cdot e^{\frac {1}{x}}}
Link to Laguerre polynomials
Generalized Laguerre polynomials
L
n
(
α
)
(
x
)
{\displaystyle L_{n}^{(\alpha )}(x)}
are linked to Lah numbers upon setting
α
=
−
1
{\displaystyle \alpha =-1}
n
!
L
n
(
−
1
)
(
x
)
=
∑
k
=
0
n
L
(
n
,
k
)
(
−
x
)
k
{\displaystyle n!L_{n}^{(-1)}(x)=\sum _{k=0}^{n}L(n,k)(-x)^{k}}
This formula is the default Laguerre polynomial in Umbral calculus convention.
Practical application
In recent years, Lah numbers have been used in steganography for hiding data in images. Compared to alternatives such as DCT, DFT and DWT, it has lower complexity of calculation—
O
(
n
log
n
)
{\displaystyle O(n\log n)}
—of their integer coefficients.
The Lah and Laguerre transforms naturally arise in the perturbative description of the chromatic dispersion.
In Lah-Laguerre optics, such an approach tremendously speeds up optimization problems.
See also
Stirling numbers
Pascal matrix
References
External links
The signed and unsigned Lah numbers are respectively (sequence A008297 in the OEIS) and (sequence A105278 in the OEIS)
Kata Kunci Pencarian:
- Secret Number
- ISSN
- ISBN
- Freddy Numberi
- Bilangan oktan
- Nomor seri elektronik
- Fate Number For
- I Am Number Four (film)
- Your Number (lagu Shinee)
- The Number (buku)
- Lah number
- KAI LAH
- List of factorial and binomial topics
- Kehlani
- Fibonacci sequence
- Foo Fighters discography
- Manglish
- Twelvefold way
- Bell polynomials
- Prime number
Indiana Jones and the Last Crusade (1989)
Beyond the Boundary: I’ll Be Here – Future (2015)
Reign of the Supermen (2019)
Watchmen (2009)
Rambo: Last Blood (2019)
The Dude in Me (2019)
No More Posts Available.
No more pages to load.