- Source: List of fractals by Hausdorff dimension
According to Benoit Mandelbrot, "A fractal is by definition a set for which the Hausdorff-Besicovitch dimension strictly exceeds the topological dimension."
Presented here is a list of fractals, ordered by increasing Hausdorff dimension, to illustrate what it means for a fractal to have a low or a high dimension.
Deterministic fractals
Random and natural fractals
See also
Fractal dimension
Hausdorff dimension
Scale invariance
Notes and references
Further reading
Mandelbrot, Benoît (1982). The Fractal Geometry of Nature. W.H. Freeman. ISBN 0-7167-1186-9.
Peitgen, Heinz-Otto (1988). Saupe, Dietmar (ed.). The Science of Fractal Images. Springer Verlag. ISBN 0-387-96608-0.
Barnsley, Michael F. (1 January 1993). Fractals Everywhere. Morgan Kaufmann. ISBN 0-12-079061-0.
Sapoval, Bernard; Mandelbrot, Benoît B. (2001). Universalités et fractales: jeux d'enfant ou délits d'initié?. Flammarion-Champs. ISBN 2-08-081466-4.
External links
The fractals on Mathworld
Other fractals on Paul Bourke's website
Soler's Gallery
Fractals on mathcurve.com
1000fractales.free.fr - Project gathering fractals created with various software
Fractals unleashed
IFStile - software that computes the dimension of the boundary of self-affine tiles