• Source: List of mathematical series
    • This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums.

      Here,




      0

      0




      {\displaystyle 0^{0}}

      is taken to have the value



      1


      {\displaystyle 1}





      {
      x
      }


      {\displaystyle \{x\}}

      denotes the fractional part of



      x


      {\displaystyle x}






      B

      n


      (
      x
      )


      {\displaystyle B_{n}(x)}

      is a Bernoulli polynomial.





      B

      n




      {\displaystyle B_{n}}

      is a Bernoulli number, and here,




      B

      1


      =



      1
      2


      .


      {\displaystyle B_{1}=-{\frac {1}{2}}.}






      E

      n




      {\displaystyle E_{n}}

      is an Euler number.




      ζ
      (
      s
      )


      {\displaystyle \zeta (s)}

      is the Riemann zeta function.




      Γ
      (
      z
      )


      {\displaystyle \Gamma (z)}

      is the gamma function.





      ψ

      n


      (
      z
      )


      {\displaystyle \psi _{n}(z)}

      is a polygamma function.





      Li

      s



      (
      z
      )


      {\displaystyle \operatorname {Li} _{s}(z)}

      is a polylogarithm.





      (



      n

      k


      )



      {\displaystyle n \choose k}

      is binomial coefficient




      exp

      (
      x
      )


      {\displaystyle \exp(x)}

      denotes exponential of



      x


      {\displaystyle x}



      Sums of powers


      See Faulhaber's formula.







      k
      =
      0


      m



      k

      n

      1


      =




      B

      n


      (
      m
      +
      1
      )


      B

      n



      n




      {\displaystyle \sum _{k=0}^{m}k^{n-1}={\frac {B_{n}(m+1)-B_{n}}{n}}}


      The first few values are:







      k
      =
      1


      m


      k
      =



      m
      (
      m
      +
      1
      )

      2




      {\displaystyle \sum _{k=1}^{m}k={\frac {m(m+1)}{2}}}








      k
      =
      1


      m



      k

      2


      =



      m
      (
      m
      +
      1
      )
      (
      2
      m
      +
      1
      )

      6


      =



      m

      3


      3


      +



      m

      2


      2


      +


      m
      6




      {\displaystyle \sum _{k=1}^{m}k^{2}={\frac {m(m+1)(2m+1)}{6}}={\frac {m^{3}}{3}}+{\frac {m^{2}}{2}}+{\frac {m}{6}}}








      k
      =
      1


      m



      k

      3


      =


      [



      m
      (
      m
      +
      1
      )

      2


      ]


      2


      =



      m

      4


      4


      +



      m

      3


      2


      +



      m

      2


      4




      {\displaystyle \sum _{k=1}^{m}k^{3}=\left[{\frac {m(m+1)}{2}}\right]^{2}={\frac {m^{4}}{4}}+{\frac {m^{3}}{2}}+{\frac {m^{2}}{4}}}


      See zeta constants.




      ζ
      (
      2
      n
      )
      =



      k
      =
      1







      1

      k

      2
      n




      =
      (

      1

      )

      n
      +
      1






      B

      2
      n


      (
      2
      π

      )

      2
      n




      2
      (
      2
      n
      )
      !





      {\displaystyle \zeta (2n)=\sum _{k=1}^{\infty }{\frac {1}{k^{2n}}}=(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}}


      The first few values are:




      ζ
      (
      2
      )
      =



      k
      =
      1







      1

      k

      2




      =



      π

      2


      6




      {\displaystyle \zeta (2)=\sum _{k=1}^{\infty }{\frac {1}{k^{2}}}={\frac {\pi ^{2}}{6}}}

      (the Basel problem)




      ζ
      (
      4
      )
      =



      k
      =
      1







      1

      k

      4




      =



      π

      4


      90




      {\displaystyle \zeta (4)=\sum _{k=1}^{\infty }{\frac {1}{k^{4}}}={\frac {\pi ^{4}}{90}}}





      ζ
      (
      6
      )
      =



      k
      =
      1







      1

      k

      6




      =



      π

      6


      945




      {\displaystyle \zeta (6)=\sum _{k=1}^{\infty }{\frac {1}{k^{6}}}={\frac {\pi ^{6}}{945}}}



      Power series




      = Low-order polylogarithms

      =
      Finite sums:







      k
      =
      m


      n



      z

      k


      =




      z

      m




      z

      n
      +
      1




      1

      z





      {\displaystyle \sum _{k=m}^{n}z^{k}={\frac {z^{m}-z^{n+1}}{1-z}}}

      , (geometric series)







      k
      =
      0


      n



      z

      k


      =



      1


      z

      n
      +
      1




      1

      z





      {\displaystyle \sum _{k=0}^{n}z^{k}={\frac {1-z^{n+1}}{1-z}}}








      k
      =
      1


      n



      z

      k


      =



      1


      z

      n
      +
      1




      1

      z




      1
      =



      z


      z

      n
      +
      1




      1

      z





      {\displaystyle \sum _{k=1}^{n}z^{k}={\frac {1-z^{n+1}}{1-z}}-1={\frac {z-z^{n+1}}{1-z}}}








      k
      =
      1


      n


      k

      z

      k


      =
      z



      1

      (
      n
      +
      1
      )

      z

      n


      +
      n

      z

      n
      +
      1




      (
      1

      z

      )

      2







      {\displaystyle \sum _{k=1}^{n}kz^{k}=z{\frac {1-(n+1)z^{n}+nz^{n+1}}{(1-z)^{2}}}}








      k
      =
      1


      n



      k

      2



      z

      k


      =
      z



      1
      +
      z

      (
      n
      +
      1

      )

      2



      z

      n


      +
      (
      2

      n

      2


      +
      2
      n

      1
      )

      z

      n
      +
      1




      n

      2



      z

      n
      +
      2




      (
      1

      z

      )

      3







      {\displaystyle \sum _{k=1}^{n}k^{2}z^{k}=z{\frac {1+z-(n+1)^{2}z^{n}+(2n^{2}+2n-1)z^{n+1}-n^{2}z^{n+2}}{(1-z)^{3}}}}








      k
      =
      1


      n



      k

      m



      z

      k


      =


      (

      z


      d

      d
      z




      )


      m





      1


      z

      n
      +
      1




      1

      z





      {\displaystyle \sum _{k=1}^{n}k^{m}z^{k}=\left(z{\frac {d}{dz}}\right)^{m}{\frac {1-z^{n+1}}{1-z}}}


      Infinite sums, valid for




      |

      z

      |

      <
      1


      {\displaystyle |z|<1}

      (see polylogarithm):





      Li

      n



      (
      z
      )
      =



      k
      =
      1








      z

      k



      k

      n






      {\displaystyle \operatorname {Li} _{n}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{n}}}}


      The following is a useful property to calculate low-integer-order polylogarithms recursively in closed form:







      d



      d

      z




      Li

      n



      (
      z
      )
      =




      Li

      n

      1



      (
      z
      )

      z




      {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {Li} _{n}(z)={\frac {\operatorname {Li} _{n-1}(z)}{z}}}






      Li

      1



      (
      z
      )
      =



      k
      =
      1








      z

      k


      k


      =

      ln

      (
      1

      z
      )


      {\displaystyle \operatorname {Li} _{1}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k}}=-\ln(1-z)}






      Li

      0



      (
      z
      )
      =



      k
      =
      1






      z

      k


      =


      z

      1

      z





      {\displaystyle \operatorname {Li} _{0}(z)=\sum _{k=1}^{\infty }z^{k}={\frac {z}{1-z}}}






      Li


      1



      (
      z
      )
      =



      k
      =
      1





      k

      z

      k


      =


      z

      (
      1

      z

      )

      2







      {\displaystyle \operatorname {Li} _{-1}(z)=\sum _{k=1}^{\infty }kz^{k}={\frac {z}{(1-z)^{2}}}}






      Li


      2



      (
      z
      )
      =



      k
      =
      1






      k

      2



      z

      k


      =



      z
      (
      1
      +
      z
      )


      (
      1

      z

      )

      3







      {\displaystyle \operatorname {Li} _{-2}(z)=\sum _{k=1}^{\infty }k^{2}z^{k}={\frac {z(1+z)}{(1-z)^{3}}}}






      Li


      3



      (
      z
      )
      =



      k
      =
      1






      k

      3



      z

      k


      =



      z
      (
      1
      +
      4
      z
      +

      z

      2


      )


      (
      1

      z

      )

      4







      {\displaystyle \operatorname {Li} _{-3}(z)=\sum _{k=1}^{\infty }k^{3}z^{k}={\frac {z(1+4z+z^{2})}{(1-z)^{4}}}}






      Li


      4



      (
      z
      )
      =



      k
      =
      1






      k

      4



      z

      k


      =



      z
      (
      1
      +
      z
      )
      (
      1
      +
      10
      z
      +

      z

      2


      )


      (
      1

      z

      )

      5







      {\displaystyle \operatorname {Li} _{-4}(z)=\sum _{k=1}^{\infty }k^{4}z^{k}={\frac {z(1+z)(1+10z+z^{2})}{(1-z)^{5}}}}



      = Exponential function

      =







      k
      =
      0








      z

      k



      k
      !



      =

      e

      z




      {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{k}}{k!}}=e^{z}}








      k
      =
      0





      k



      z

      k



      k
      !



      =
      z

      e

      z




      {\displaystyle \sum _{k=0}^{\infty }k{\frac {z^{k}}{k!}}=ze^{z}}

      (cf. mean of Poisson distribution)







      k
      =
      0






      k

      2





      z

      k



      k
      !



      =
      (
      z
      +

      z

      2


      )

      e

      z




      {\displaystyle \sum _{k=0}^{\infty }k^{2}{\frac {z^{k}}{k!}}=(z+z^{2})e^{z}}

      (cf. second moment of Poisson distribution)







      k
      =
      0






      k

      3





      z

      k



      k
      !



      =
      (
      z
      +
      3

      z

      2


      +

      z

      3


      )

      e

      z




      {\displaystyle \sum _{k=0}^{\infty }k^{3}{\frac {z^{k}}{k!}}=(z+3z^{2}+z^{3})e^{z}}








      k
      =
      0






      k

      4





      z

      k



      k
      !



      =
      (
      z
      +
      7

      z

      2


      +
      6

      z

      3


      +

      z

      4


      )

      e

      z




      {\displaystyle \sum _{k=0}^{\infty }k^{4}{\frac {z^{k}}{k!}}=(z+7z^{2}+6z^{3}+z^{4})e^{z}}








      k
      =
      0






      k

      n





      z

      k



      k
      !



      =
      z


      d

      d
      z






      k
      =
      0






      k

      n

      1





      z

      k



      k
      !





      =

      e

      z



      T

      n


      (
      z
      )


      {\displaystyle \sum _{k=0}^{\infty }k^{n}{\frac {z^{k}}{k!}}=z{\frac {d}{dz}}\sum _{k=0}^{\infty }k^{n-1}{\frac {z^{k}}{k!}}\,\!=e^{z}T_{n}(z)}


      where




      T

      n


      (
      z
      )


      {\displaystyle T_{n}(z)}

      is the Touchard polynomials.


      = Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions relationship

      =







      k
      =
      0








      (

      1

      )

      k



      z

      2
      k
      +
      1




      (
      2
      k
      +
      1
      )
      !



      =
      sin

      z


      {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{(2k+1)!}}=\sin z}








      k
      =
      0








      z

      2
      k
      +
      1



      (
      2
      k
      +
      1
      )
      !



      =
      sinh

      z


      {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{(2k+1)!}}=\sinh z}








      k
      =
      0








      (

      1

      )

      k



      z

      2
      k




      (
      2
      k
      )
      !



      =
      cos

      z


      {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{(2k)!}}=\cos z}








      k
      =
      0








      z

      2
      k



      (
      2
      k
      )
      !



      =
      cosh

      z


      {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k}}{(2k)!}}=\cosh z}








      k
      =
      1








      (

      1

      )

      k

      1


      (

      2

      2
      k



      1
      )

      2

      2
      k



      B

      2
      k



      z

      2
      k

      1




      (
      2
      k
      )
      !



      =
      tan

      z
      ,

      |

      z

      |

      <


      π
      2




      {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tan z,|z|<{\frac {\pi }{2}}}








      k
      =
      1








      (

      2

      2
      k



      1
      )

      2

      2
      k



      B

      2
      k



      z

      2
      k

      1




      (
      2
      k
      )
      !



      =
      tanh

      z
      ,

      |

      z

      |

      <


      π
      2




      {\displaystyle \sum _{k=1}^{\infty }{\frac {(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tanh z,|z|<{\frac {\pi }{2}}}








      k
      =
      0








      (

      1

      )

      k



      2

      2
      k



      B

      2
      k



      z

      2
      k

      1




      (
      2
      k
      )
      !



      =
      cot

      z
      ,

      |

      z

      |

      <
      π


      {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\cot z,|z|<\pi }








      k
      =
      0









      2

      2
      k



      B

      2
      k



      z

      2
      k

      1




      (
      2
      k
      )
      !



      =
      coth

      z
      ,

      |

      z

      |

      <
      π


      {\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\coth z,|z|<\pi }








      k
      =
      0








      (

      1

      )

      k

      1


      (

      2

      2
      k



      2
      )

      B

      2
      k



      z

      2
      k

      1




      (
      2
      k
      )
      !



      =
      csc

      z
      ,

      |

      z

      |

      <
      π


      {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\csc z,|z|<\pi }








      k
      =
      0









      (

      2

      2
      k



      2
      )

      B

      2
      k



      z

      2
      k

      1




      (
      2
      k
      )
      !



      =
      csch

      z
      ,

      |

      z

      |

      <
      π


      {\displaystyle \sum _{k=0}^{\infty }{\frac {-(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\operatorname {csch} z,|z|<\pi }








      k
      =
      0








      (

      1

      )

      k



      E

      2
      k



      z

      2
      k




      (
      2
      k
      )
      !



      =
      sech

      z
      ,

      |

      z

      |

      <


      π
      2




      {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}E_{2k}z^{2k}}{(2k)!}}=\operatorname {sech} z,|z|<{\frac {\pi }{2}}}








      k
      =
      0









      E

      2
      k



      z

      2
      k




      (
      2
      k
      )
      !



      =
      sec

      z
      ,

      |

      z

      |

      <


      π
      2




      {\displaystyle \sum _{k=0}^{\infty }{\frac {E_{2k}z^{2k}}{(2k)!}}=\sec z,|z|<{\frac {\pi }{2}}}








      k
      =
      1








      (

      1

      )

      k

      1



      z

      2
      k




      (
      2
      k
      )
      !



      =
      ver

      z


      {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{(2k)!}}=\operatorname {ver} z}

      (versine)







      k
      =
      1








      (

      1

      )

      k

      1



      z

      2
      k




      2
      (
      2
      k
      )
      !



      =
      hav

      z


      {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{2(2k)!}}=\operatorname {hav} z}

      (haversine)







      k
      =
      0








      (
      2
      k
      )
      !

      z

      2
      k
      +
      1





      2

      2
      k


      (
      k
      !

      )

      2


      (
      2
      k
      +
      1
      )



      =
      arcsin

      z
      ,

      |

      z

      |


      1


      {\displaystyle \sum _{k=0}^{\infty }{\frac {(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\arcsin z,|z|\leq 1}








      k
      =
      0








      (

      1

      )

      k


      (
      2
      k
      )
      !

      z

      2
      k
      +
      1





      2

      2
      k


      (
      k
      !

      )

      2


      (
      2
      k
      +
      1
      )



      =
      arcsinh


      z

      ,

      |

      z

      |


      1


      {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\operatorname {arcsinh} {z},|z|\leq 1}








      k
      =
      0








      (

      1

      )

      k



      z

      2
      k
      +
      1




      2
      k
      +
      1



      =
      arctan

      z
      ,

      |

      z

      |

      <
      1


      {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2k+1}}=\arctan z,|z|<1}








      k
      =
      0








      z

      2
      k
      +
      1



      2
      k
      +
      1



      =
      arctanh

      z
      ,

      |

      z

      |

      <
      1


      {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{2k+1}}=\operatorname {arctanh} z,|z|<1}





      ln

      2
      +



      k
      =
      1








      (

      1

      )

      k

      1


      (
      2
      k
      )
      !

      z

      2
      k





      2

      2
      k
      +
      1


      k
      (
      k
      !

      )

      2





      =
      ln


      (

      1
      +


      1
      +

      z

      2





      )

      ,

      |

      z

      |


      1


      {\displaystyle \ln 2+\sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2k)!z^{2k}}{2^{2k+1}k(k!)^{2}}}=\ln \left(1+{\sqrt {1+z^{2}}}\right),|z|\leq 1}








      k
      =
      2






      (

      k

      arctanh


      (


      1
      k


      )


      1

      )

      =



      3

      ln

      (
      4
      π
      )

      2




      {\displaystyle \sum _{k=2}^{\infty }\left(k\cdot \operatorname {arctanh} \left({\frac {1}{k}}\right)-1\right)={\frac {3-\ln(4\pi )}{2}}}



      = Modified-factorial denominators

      =







      k
      =
      0








      (
      4
      k
      )
      !



      2

      4
      k




      2


      (
      2
      k
      )
      !
      (
      2
      k
      +
      1
      )
      !




      z

      k


      =




      1



      1

      z



      z



      ,

      |

      z

      |

      <
      1


      {\displaystyle \sum _{k=0}^{\infty }{\frac {(4k)!}{2^{4k}{\sqrt {2}}(2k)!(2k+1)!}}z^{k}={\sqrt {\frac {1-{\sqrt {1-z}}}{z}}},|z|<1}








      k
      =
      0









      2

      2
      k


      (
      k
      !

      )

      2




      (
      k
      +
      1
      )
      (
      2
      k
      +
      1
      )
      !




      z

      2
      k
      +
      2


      =


      (

      arcsin


      z


      )


      2


      ,

      |

      z

      |


      1


      {\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}(k!)^{2}}{(k+1)(2k+1)!}}z^{2k+2}=\left(\arcsin {z}\right)^{2},|z|\leq 1}








      n
      =
      0











      k
      =
      0


      n

      1


      (
      4

      k

      2


      +

      α

      2


      )


      (
      2
      n
      )
      !




      z

      2
      n


      +



      n
      =
      0








      α



      k
      =
      0


      n

      1


      [
      (
      2
      k
      +
      1

      )

      2


      +

      α

      2


      ]


      (
      2
      n
      +
      1
      )
      !




      z

      2
      n
      +
      1


      =

      e

      α
      arcsin


      z



      ,

      |

      z

      |


      1


      {\displaystyle \sum _{n=0}^{\infty }{\frac {\prod _{k=0}^{n-1}(4k^{2}+\alpha ^{2})}{(2n)!}}z^{2n}+\sum _{n=0}^{\infty }{\frac {\alpha \prod _{k=0}^{n-1}[(2k+1)^{2}+\alpha ^{2}]}{(2n+1)!}}z^{2n+1}=e^{\alpha \arcsin {z}},|z|\leq 1}



      = Binomial coefficients

      =




      (
      1
      +
      z

      )

      α


      =



      k
      =
      0








      (


      α
      k


      )




      z

      k


      ,

      |

      z

      |

      <
      1


      {\displaystyle (1+z)^{\alpha }=\sum _{k=0}^{\infty }{\alpha \choose k}z^{k},|z|<1}

      (see Binomial theorem § Newton's generalized binomial theorem)







      k
      =
      0








      (



      α
      +
      k

      1

      k


      )




      z

      k


      =


      1

      (
      1

      z

      )

      α





      ,

      |

      z

      |

      <
      1


      {\displaystyle \sum _{k=0}^{\infty }{{\alpha +k-1} \choose k}z^{k}={\frac {1}{(1-z)^{\alpha }}},|z|<1}









      k
      =
      0







      1

      k
      +
      1






      (



      2
      k

      k


      )




      z

      k


      =



      1



      1

      4
      z




      2
      z



      ,

      |

      z

      |




      1
      4




      {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{k+1}}{2k \choose k}z^{k}={\frac {1-{\sqrt {1-4z}}}{2z}},|z|\leq {\frac {1}{4}}}

      , generating function of the Catalan numbers







      k
      =
      0








      (



      2
      k

      k


      )




      z

      k


      =


      1

      1

      4
      z



      ,

      |

      z

      |

      <


      1
      4




      {\displaystyle \sum _{k=0}^{\infty }{2k \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}},|z|<{\frac {1}{4}}}

      , generating function of the Central binomial coefficients







      k
      =
      0








      (



      2
      k
      +
      α

      k


      )




      z

      k


      =


      1

      1

      4
      z





      (



      1



      1

      4
      z




      2
      z



      )


      α


      ,

      |

      z

      |

      <


      1
      4




      {\displaystyle \sum _{k=0}^{\infty }{2k+\alpha \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}}\left({\frac {1-{\sqrt {1-4z}}}{2z}}\right)^{\alpha },|z|<{\frac {1}{4}}}



      = Harmonic numbers

      =
      (See harmonic numbers, themselves defined




      H

      n


      =



      j
      =
      1


      n




      1
      j




      {\textstyle H_{n}=\sum _{j=1}^{n}{\frac {1}{j}}}

      , and



      H
      (
      x
      )


      {\displaystyle H(x)}

      generalized to the real numbers)







      k
      =
      1






      H

      k



      z

      k


      =




      ln

      (
      1

      z
      )


      1

      z



      ,

      |

      z

      |

      <
      1


      {\displaystyle \sum _{k=1}^{\infty }H_{k}z^{k}={\frac {-\ln(1-z)}{1-z}},|z|<1}








      k
      =
      1








      H

      k



      k
      +
      1




      z

      k
      +
      1


      =


      1
      2




      [

      ln

      (
      1

      z
      )

      ]


      2


      ,


      |

      z

      |

      <
      1


      {\displaystyle \sum _{k=1}^{\infty }{\frac {H_{k}}{k+1}}z^{k+1}={\frac {1}{2}}\left[\ln(1-z)\right]^{2},\qquad |z|<1}








      k
      =
      1








      (

      1

      )

      k

      1



      H

      2
      k




      2
      k
      +
      1




      z

      2
      k
      +
      1


      =


      1
      2


      arctan


      z

      log


      (
      1
      +

      z

      2


      )

      ,


      |

      z

      |

      <
      1


      {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}H_{2k}}{2k+1}}z^{2k+1}={\frac {1}{2}}\arctan {z}\log {(1+z^{2})},\qquad |z|<1}








      n
      =
      0








      k
      =
      0


      2
      n





      (

      1

      )

      k




      2
      k
      +
      1






      z

      4
      n
      +
      2



      4
      n
      +
      2



      =


      1
      4


      arctan


      z

      log




      1
      +
      z


      1

      z



      ,


      |

      z

      |

      <
      1


      {\displaystyle \sum _{n=0}^{\infty }\sum _{k=0}^{2n}{\frac {(-1)^{k}}{2k+1}}{\frac {z^{4n+2}}{4n+2}}={\frac {1}{4}}\arctan {z}\log {\frac {1+z}{1-z}},\qquad |z|<1}








      n
      =
      0








      x

      2




      n

      2


      (
      n
      +
      x
      )



      =
      x



      π

      2


      6



      H
      (
      x
      )


      {\displaystyle \sum _{n=0}^{\infty }{\frac {x^{2}}{n^{2}(n+x)}}=x{\frac {\pi ^{2}}{6}}-H(x)}



      Binomial coefficients









      k
      =
      0


      n





      (


      n
      k


      )



      =

      2

      n




      {\displaystyle \sum _{k=0}^{n}{n \choose k}=2^{n}}








      k
      =
      0


      n






      (


      n
      k


      )




      2


      =



      (



      2
      n

      n


      )





      {\displaystyle \sum _{k=0}^{n}{n \choose k}^{2}={2n \choose n}}








      k
      =
      0


      n


      (

      1

      )

      k





      (


      n
      k


      )



      =
      0
      ,

      where

      n

      1


      {\displaystyle \sum _{k=0}^{n}(-1)^{k}{n \choose k}=0,{\text{ where }}n\geq 1}








      k
      =
      0


      n





      (


      k
      m


      )



      =



      (



      n
      +
      1


      m
      +
      1



      )





      {\displaystyle \sum _{k=0}^{n}{k \choose m}={n+1 \choose m+1}}








      k
      =
      0


      n





      (



      m
      +
      k

      1

      k


      )



      =



      (



      n
      +
      m

      n


      )





      {\displaystyle \sum _{k=0}^{n}{m+k-1 \choose k}={n+m \choose n}}

      (see Multiset)







      k
      =
      0


      n





      (


      α
      k


      )






      (


      β

      n

      k



      )



      =



      (



      α
      +
      β

      n


      )



      ,

      where


      α
      +
      β

      n


      {\displaystyle \sum _{k=0}^{n}{\alpha \choose k}{\beta \choose n-k}={\alpha +\beta \choose n},{\text{where}}\ \alpha +\beta \geq n}

      (see Vandermonde identity)







      A





      P


      (
      E
      )


      1
      =

      2

      n



      , where

      E

      is a finite set, and card(

      E

      ) = n



      {\displaystyle \sum _{A\ \in \ {\mathcal {P}}(E)}1=2^{n}{\text{, where }}E{\text{ is a finite set, and card(}}E{\text{) = n}}}









      {



      (
      A
      ,

      B
      )



      (


      P


      (
      E
      )

      )

      2






      A



      B







      1
      =

      3

      n



      , where

      E

      is a finite set, and card(

      E

      ) = n



      {\displaystyle \sum _{\begin{cases}(A,\ B)\ \in \ ({\mathcal {P}}(E))^{2}\\A\ \subset \ B\end{cases}}1=3^{n}{\text{, where }}E{\text{ is a finite set, and card(}}E{\text{) = n}}}








      A





      P


      (
      E
      )


      c
      a
      r
      d
      (
      A
      )
      =
      n

      2

      n

      1



      , where

      E

      is a finite set, and card(

      E

      ) = n



      {\displaystyle \sum _{A\ \in \ {\mathcal {P}}(E)}card(A)=n2^{n-1}{\text{, where }}E{\text{ is a finite set, and card(}}E{\text{) = n}}}



      Trigonometric functions


      Sums of sines and cosines arise in Fourier series.







      k
      =
      1








      cos

      (
      k
      θ
      )

      k


      =



      1
      2


      ln

      (
      2

      2
      cos

      θ
      )
      =

      ln


      (

      2
      sin



      θ
      2



      )

      ,
      0
      <
      θ
      <
      2
      π


      {\displaystyle \sum _{k=1}^{\infty }{\frac {\cos(k\theta )}{k}}=-{\frac {1}{2}}\ln(2-2\cos \theta )=-\ln \left(2\sin {\frac {\theta }{2}}\right),0<\theta <2\pi }








      k
      =
      1








      sin

      (
      k
      θ
      )

      k


      =



      π

      θ

      2


      ,
      0
      <
      θ
      <
      2
      π


      {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(k\theta )}{k}}={\frac {\pi -\theta }{2}},0<\theta <2\pi }








      k
      =
      1








      (

      1

      )

      k

      1



      k


      cos

      (
      k
      θ
      )
      =


      1
      2


      ln

      (
      2
      +
      2
      cos

      θ
      )
      =
      ln


      (

      2
      cos



      θ
      2



      )

      ,
      0

      θ
      <
      π


      {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}}{k}}\cos(k\theta )={\frac {1}{2}}\ln(2+2\cos \theta )=\ln \left(2\cos {\frac {\theta }{2}}\right),0\leq \theta <\pi }








      k
      =
      1








      (

      1

      )

      k

      1



      k


      sin

      (
      k
      θ
      )
      =


      θ
      2


      ,



      π
      2



      θ



      π
      2




      {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}}{k}}\sin(k\theta )={\frac {\theta }{2}},-{\frac {\pi }{2}}\leq \theta \leq {\frac {\pi }{2}}}








      k
      =
      1








      cos

      (
      2
      k
      θ
      )


      2
      k



      =



      1
      2


      ln

      (
      2
      sin

      θ
      )
      ,
      0
      <
      θ
      <
      π


      {\displaystyle \sum _{k=1}^{\infty }{\frac {\cos(2k\theta )}{2k}}=-{\frac {1}{2}}\ln(2\sin \theta ),0<\theta <\pi }








      k
      =
      1








      sin

      (
      2
      k
      θ
      )


      2
      k



      =



      π

      2
      θ

      4


      ,
      0
      <
      θ
      <
      π


      {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(2k\theta )}{2k}}={\frac {\pi -2\theta }{4}},0<\theta <\pi }








      k
      =
      0








      cos

      [
      (
      2
      k
      +
      1
      )
      θ
      ]


      2
      k
      +
      1



      =


      1
      2


      ln


      (

      cot



      θ
      2



      )

      ,
      0
      <
      θ
      <
      π


      {\displaystyle \sum _{k=0}^{\infty }{\frac {\cos[(2k+1)\theta ]}{2k+1}}={\frac {1}{2}}\ln \left(\cot {\frac {\theta }{2}}\right),0<\theta <\pi }








      k
      =
      0








      sin

      [
      (
      2
      k
      +
      1
      )
      θ
      ]


      2
      k
      +
      1



      =


      π
      4


      ,
      0
      <
      θ
      <
      π


      {\displaystyle \sum _{k=0}^{\infty }{\frac {\sin[(2k+1)\theta ]}{2k+1}}={\frac {\pi }{4}},0<\theta <\pi }

      ,







      k
      =
      1








      sin

      (
      2
      π
      k
      x
      )

      k


      =
      π

      (




      1
      2




      {
      x
      }

      )

      ,

      x


      R



      {\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(2\pi kx)}{k}}=\pi \left({\dfrac {1}{2}}-\{x\}\right),\ x\in \mathbb {R} }








      k
      =
      1








      sin


      (

      2
      π
      k
      x

      )



      k

      2
      n

      1




      =
      (

      1

      )

      n





      (
      2
      π

      )

      2
      n

      1




      2
      (
      2
      n

      1
      )
      !




      B

      2
      n

      1


      (
      {
      x
      }
      )
      ,

      x


      R

      ,

      n


      N



      {\displaystyle \sum \limits _{k=1}^{\infty }{\frac {\sin \left(2\pi kx\right)}{k^{2n-1}}}=(-1)^{n}{\frac {(2\pi )^{2n-1}}{2(2n-1)!}}B_{2n-1}(\{x\}),\ x\in \mathbb {R} ,\ n\in \mathbb {N} }








      k
      =
      1








      cos


      (

      2
      π
      k
      x

      )



      k

      2
      n




      =
      (

      1

      )

      n

      1





      (
      2
      π

      )

      2
      n




      2
      (
      2
      n
      )
      !




      B

      2
      n


      (
      {
      x
      }
      )
      ,

      x


      R

      ,

      n


      N



      {\displaystyle \sum \limits _{k=1}^{\infty }{\frac {\cos \left(2\pi kx\right)}{k^{2n}}}=(-1)^{n-1}{\frac {(2\pi )^{2n}}{2(2n)!}}B_{2n}(\{x\}),\ x\in \mathbb {R} ,\ n\in \mathbb {N} }






      B

      n


      (
      x
      )
      =




      n
      !



      2

      n

      1



      π

      n








      k
      =
      1







      1

      k

      n




      cos


      (

      2
      π
      k
      x




      π
      n

      2



      )

      ,
      0
      <
      x
      <
      1


      {\displaystyle B_{n}(x)=-{\frac {n!}{2^{n-1}\pi ^{n}}}\sum _{k=1}^{\infty }{\frac {1}{k^{n}}}\cos \left(2\pi kx-{\frac {\pi n}{2}}\right),0







      k
      =
      0


      n


      sin

      (
      θ
      +
      k
      α
      )
      =



      sin




      (
      n
      +
      1
      )
      α

      2


      sin

      (
      θ
      +



      n
      α

      2


      )


      sin



      α
      2







      {\displaystyle \sum _{k=0}^{n}\sin(\theta +k\alpha )={\frac {\sin {\frac {(n+1)\alpha }{2}}\sin(\theta +{\frac {n\alpha }{2}})}{\sin {\frac {\alpha }{2}}}}}








      k
      =
      0


      n


      cos

      (
      θ
      +
      k
      α
      )
      =



      sin




      (
      n
      +
      1
      )
      α

      2


      cos

      (
      θ
      +



      n
      α

      2


      )


      sin



      α
      2







      {\displaystyle \sum _{k=0}^{n}\cos(\theta +k\alpha )={\frac {\sin {\frac {(n+1)\alpha }{2}}\cos(\theta +{\frac {n\alpha }{2}})}{\sin {\frac {\alpha }{2}}}}}








      k
      =
      1


      n

      1


      sin




      π
      k

      n


      =
      cot



      π

      2
      n





      {\displaystyle \sum _{k=1}^{n-1}\sin {\frac {\pi k}{n}}=\cot {\frac {\pi }{2n}}}








      k
      =
      1


      n

      1


      sin




      2
      π
      k

      n


      =
      0


      {\displaystyle \sum _{k=1}^{n-1}\sin {\frac {2\pi k}{n}}=0}








      k
      =
      0


      n

      1



      csc

      2




      (

      θ
      +



      π
      k

      n



      )

      =

      n

      2



      csc

      2



      (
      n
      θ
      )


      {\displaystyle \sum _{k=0}^{n-1}\csc ^{2}\left(\theta +{\frac {\pi k}{n}}\right)=n^{2}\csc ^{2}(n\theta )}








      k
      =
      1


      n

      1



      csc

      2






      π
      k

      n


      =




      n

      2



      1

      3




      {\displaystyle \sum _{k=1}^{n-1}\csc ^{2}{\frac {\pi k}{n}}={\frac {n^{2}-1}{3}}}








      k
      =
      1


      n

      1



      csc

      4






      π
      k

      n


      =




      n

      4


      +
      10

      n

      2



      11

      45




      {\displaystyle \sum _{k=1}^{n-1}\csc ^{4}{\frac {\pi k}{n}}={\frac {n^{4}+10n^{2}-11}{45}}}



      Rational functions









      n
      =
      a
      +
      1







      a


      n

      2




      a

      2





      =


      1
      2



      H

      2
      a




      {\displaystyle \sum _{n=a+1}^{\infty }{\frac {a}{n^{2}-a^{2}}}={\frac {1}{2}}H_{2a}}








      n
      =
      0







      1


      n

      2


      +

      a

      2





      =



      1
      +
      a
      π
      coth

      (
      a
      π
      )


      2

      a

      2







      {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{2}+a^{2}}}={\frac {1+a\pi \coth(a\pi )}{2a^{2}}}}








      n
      =
      0








      (

      1

      )

      n





      n

      2


      +

      a

      2





      =



      1
      +
      a
      π


      csch

      (
      a
      π
      )


      2

      a

      2







      {\displaystyle \sum _{n=0}^{\infty }{\frac {(-1)^{n}}{n^{2}+a^{2}}}={\frac {1+a\pi \;{\text{csch}}(a\pi )}{2a^{2}}}}








      n
      =
      0








      (
      2
      n
      +
      1
      )
      (

      1

      )

      n




      (
      2
      n
      +
      1

      )

      2


      +

      a

      2





      =


      π
      4



      sech


      (



      a
      π

      2


      )



      {\displaystyle \sum _{n=0}^{\infty }{\frac {(2n+1)(-1)^{n}}{(2n+1)^{2}+a^{2}}}={\frac {\pi }{4}}{\text{sech}}\left({\frac {a\pi }{2}}\right)}









      n
      =
      0







      1


      n

      4


      +
      4

      a

      4





      =



      1

      8

      a

      4






      +




      π
      (
      sinh

      (
      2
      π
      a
      )
      +
      sin

      (
      2
      π
      a
      )
      )


      8

      a

      3


      (
      cosh

      (
      2
      π
      a
      )

      cos

      (
      2
      π
      a
      )
      )







      {\displaystyle \displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{4}+4a^{4}}}={\dfrac {1}{8a^{4}}}+{\dfrac {\pi (\sinh(2\pi a)+\sin(2\pi a))}{8a^{3}(\cosh(2\pi a)-\cos(2\pi a))}}}


      An infinite series of any rational function of



      n


      {\displaystyle n}

      can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.


      Exponential function










      1

      p







      n
      =
      0


      p

      1


      exp


      (



      2
      π
      i

      n

      2


      q

      p


      )

      =




      e

      π
      i

      /

      4



      2
      q







      n
      =
      0


      2
      q

      1


      exp


      (





      π
      i

      n

      2


      p


      2
      q




      )




      {\displaystyle \displaystyle {\dfrac {1}{\sqrt {p}}}\sum _{n=0}^{p-1}\exp \left({\frac {2\pi in^{2}q}{p}}\right)={\dfrac {e^{\pi i/4}}{\sqrt {2q}}}\sum _{n=0}^{2q-1}\exp \left(-{\frac {\pi in^{2}p}{2q}}\right)}

      (see the Landsberg–Schaar relation)








      n
      =








      e


      π

      n

      2




      =



      π

      4



      Γ

      (


      3
      4


      )







      {\displaystyle \displaystyle \sum _{n=-\infty }^{\infty }e^{-\pi n^{2}}={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}}



      Numeric series


      These numeric series can be found by plugging in numbers from the series listed above.


      = Alternating harmonic series

      =







      k
      =
      1








      (

      1

      )

      k
      +
      1



      k


      =


      1
      1





      1
      2


      +


      1
      3





      1
      4


      +

      =
      ln

      2


      {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{k}}={\frac {1}{1}}-{\frac {1}{2}}+{\frac {1}{3}}-{\frac {1}{4}}+\cdots =\ln 2}








      k
      =
      1








      (

      1

      )

      k
      +
      1




      2
      k

      1



      =


      1
      1





      1
      3


      +


      1
      5





      1
      7


      +


      1
      9




      =


      π
      4




      {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{2k-1}}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots ={\frac {\pi }{4}}}



      = Sum of reciprocal of factorials

      =







      k
      =
      0







      1

      k
      !



      =


      1

      0
      !



      +


      1

      1
      !



      +


      1

      2
      !



      +


      1

      3
      !



      +


      1

      4
      !



      +

      =
      e


      {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{k!}}={\frac {1}{0!}}+{\frac {1}{1!}}+{\frac {1}{2!}}+{\frac {1}{3!}}+{\frac {1}{4!}}+\cdots =e}








      k
      =
      0







      1

      (
      2
      k
      )
      !



      =


      1

      0
      !



      +


      1

      2
      !



      +


      1

      4
      !



      +


      1

      6
      !



      +


      1

      8
      !



      +

      =


      1
      2



      (

      e
      +


      1
      e



      )

      =
      cosh

      1


      {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(2k)!}}={\frac {1}{0!}}+{\frac {1}{2!}}+{\frac {1}{4!}}+{\frac {1}{6!}}+{\frac {1}{8!}}+\cdots ={\frac {1}{2}}\left(e+{\frac {1}{e}}\right)=\cosh 1}








      k
      =
      0







      1

      (
      3
      k
      )
      !



      =


      1

      0
      !



      +


      1

      3
      !



      +


      1

      6
      !



      +


      1

      9
      !



      +


      1

      12
      !



      +

      =


      1
      3



      (

      e
      +


      2

      e



      cos




      3

      2



      )



      {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(3k)!}}={\frac {1}{0!}}+{\frac {1}{3!}}+{\frac {1}{6!}}+{\frac {1}{9!}}+{\frac {1}{12!}}+\cdots ={\frac {1}{3}}\left(e+{\frac {2}{\sqrt {e}}}\cos {\frac {\sqrt {3}}{2}}\right)}








      k
      =
      0







      1

      (
      4
      k
      )
      !



      =


      1

      0
      !



      +


      1

      4
      !



      +


      1

      8
      !



      +


      1

      12
      !



      +


      1

      16
      !



      +

      =


      1
      2



      (

      cos

      1
      +
      cosh

      1

      )



      {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(4k)!}}={\frac {1}{0!}}+{\frac {1}{4!}}+{\frac {1}{8!}}+{\frac {1}{12!}}+{\frac {1}{16!}}+\cdots ={\frac {1}{2}}\left(\cos 1+\cosh 1\right)}



      = Trigonometry and π

      =







      k
      =
      0








      (

      1

      )

      k




      (
      2
      k
      +
      1
      )
      !



      =


      1

      1
      !






      1

      3
      !



      +


      1

      5
      !






      1

      7
      !



      +


      1

      9
      !



      +

      =
      sin

      1


      {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}}{(2k+1)!}}={\frac {1}{1!}}-{\frac {1}{3!}}+{\frac {1}{5!}}-{\frac {1}{7!}}+{\frac {1}{9!}}+\cdots =\sin 1}








      k
      =
      0








      (

      1

      )

      k




      (
      2
      k
      )
      !



      =


      1

      0
      !






      1

      2
      !



      +


      1

      4
      !






      1

      6
      !



      +


      1

      8
      !



      +

      =
      cos

      1


      {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}}{(2k)!}}={\frac {1}{0!}}-{\frac {1}{2!}}+{\frac {1}{4!}}-{\frac {1}{6!}}+{\frac {1}{8!}}+\cdots =\cos 1}








      k
      =
      1







      1


      k

      2


      +
      1



      =


      1
      2


      +


      1
      5


      +


      1
      10


      +


      1
      17


      +

      =


      1
      2


      (
      π
      coth

      π

      1
      )


      {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{k^{2}+1}}={\frac {1}{2}}+{\frac {1}{5}}+{\frac {1}{10}}+{\frac {1}{17}}+\cdots ={\frac {1}{2}}(\pi \coth \pi -1)}








      k
      =
      1








      (

      1

      )

      k





      k

      2


      +
      1



      =



      1
      2


      +


      1
      5





      1
      10


      +


      1
      17


      +

      =


      1
      2


      (
      π
      csch

      π

      1
      )


      {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k}}{k^{2}+1}}=-{\frac {1}{2}}+{\frac {1}{5}}-{\frac {1}{10}}+{\frac {1}{17}}+\cdots ={\frac {1}{2}}(\pi \operatorname {csch} \pi -1)}





      3
      +


      4

      2
      ×
      3
      ×
      4






      4

      4
      ×
      5
      ×
      6



      +


      4

      6
      ×
      7
      ×
      8






      4

      8
      ×
      9
      ×
      10



      +

      =
      π


      {\displaystyle 3+{\frac {4}{2\times 3\times 4}}-{\frac {4}{4\times 5\times 6}}+{\frac {4}{6\times 7\times 8}}-{\frac {4}{8\times 9\times 10}}+\cdots =\pi }



      = Reciprocal of tetrahedral numbers

      =







      k
      =
      1







      1

      T

      e

      k





      =


      1
      1


      +


      1
      4


      +


      1
      10


      +


      1
      20


      +


      1
      35


      +

      =


      3
      2




      {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{Te_{k}}}={\frac {1}{1}}+{\frac {1}{4}}+{\frac {1}{10}}+{\frac {1}{20}}+{\frac {1}{35}}+\cdots ={\frac {3}{2}}}


      Where



      T

      e

      n


      =



      k
      =
      1


      n



      T

      k




      {\displaystyle Te_{n}=\sum _{k=1}^{n}T_{k}}



      = Exponential and logarithms

      =







      k
      =
      0







      1

      (
      2
      k
      +
      1
      )
      (
      2
      k
      +
      2
      )



      =


      1

      1
      ×
      2



      +


      1

      3
      ×
      4



      +


      1

      5
      ×
      6



      +


      1

      7
      ×
      8



      +


      1

      9
      ×
      10



      +

      =
      ln

      2


      {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{(2k+1)(2k+2)}}={\frac {1}{1\times 2}}+{\frac {1}{3\times 4}}+{\frac {1}{5\times 6}}+{\frac {1}{7\times 8}}+{\frac {1}{9\times 10}}+\cdots =\ln 2}








      k
      =
      1







      1


      2

      k


      k



      =


      1
      2


      +


      1
      8


      +


      1
      24


      +


      1
      64


      +


      1
      160


      +

      =
      ln

      2


      {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{2^{k}k}}={\frac {1}{2}}+{\frac {1}{8}}+{\frac {1}{24}}+{\frac {1}{64}}+{\frac {1}{160}}+\cdots =\ln 2}








      k
      =
      1








      (

      1

      )

      k
      +
      1





      2

      k


      k



      +



      k
      =
      1








      (

      1

      )

      k
      +
      1





      3

      k


      k



      =


      (




      1
      2


      +


      1
      3




      )





      (




      1
      8


      +


      1
      18




      )


      +


      (




      1
      24


      +


      1
      81




      )





      (




      1
      64


      +


      1
      324




      )


      +

      =
      ln

      2


      {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{2^{k}k}}+\sum _{k=1}^{\infty }{\frac {(-1)^{k+1}}{3^{k}k}}={\Bigg (}{\frac {1}{2}}+{\frac {1}{3}}{\Bigg )}-{\Bigg (}{\frac {1}{8}}+{\frac {1}{18}}{\Bigg )}+{\Bigg (}{\frac {1}{24}}+{\frac {1}{81}}{\Bigg )}-{\Bigg (}{\frac {1}{64}}+{\frac {1}{324}}{\Bigg )}+\cdots =\ln 2}








      k
      =
      1







      1


      3

      k


      k



      +



      k
      =
      1







      1


      4

      k


      k



      =


      (




      1
      3


      +


      1
      4




      )


      +


      (




      1
      18


      +


      1
      32




      )


      +


      (




      1
      81


      +


      1
      192




      )


      +


      (




      1
      324


      +


      1
      1024




      )


      +

      =
      ln

      2


      {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{3^{k}k}}+\sum _{k=1}^{\infty }{\frac {1}{4^{k}k}}={\Bigg (}{\frac {1}{3}}+{\frac {1}{4}}{\Bigg )}+{\Bigg (}{\frac {1}{18}}+{\frac {1}{32}}{\Bigg )}+{\Bigg (}{\frac {1}{81}}+{\frac {1}{192}}{\Bigg )}+{\Bigg (}{\frac {1}{324}}+{\frac {1}{1024}}{\Bigg )}+\cdots =\ln 2}








      k
      =
      1







      1


      n

      k


      k



      =
      ln


      (


      n

      n

      1



      )



      {\displaystyle \sum _{k=1}^{\infty }{\frac {1}{n^{k}k}}=\ln \left({\frac {n}{n-1}}\right)}

      , that is




      n
      >
      1


      {\displaystyle \forall n>1}



      See also




      Notes




      References


      Many books with a list of integrals also have a list of series.

    Kata Kunci Pencarian: