• Source: Medial pentagonal hexecontahedron
    • In geometry, the medial pentagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the snub dodecadodecahedron. It has 60 intersecting irregular pentagonal faces.


      Proportions


      Denote the golden ratio by φ, and let



      ξ


      0.409

      037

      788

      014

      42


      {\displaystyle \xi \approx -0.409\,037\,788\,014\,42}

      be the smallest (most negative) real zero of the polynomial



      P
      =
      8

      x

      4



      12

      x

      3


      +
      5
      x
      +
      1.


      {\displaystyle P=8x^{4}-12x^{3}+5x+1.}

      Then each face has three equal angles of



      arccos

      (
      ξ
      )

      114.144

      404

      470


      43




      ,


      {\displaystyle \arccos(\xi )\approx 114.144\,404\,470\,43^{\circ },}

      one of



      arccos

      (

      φ

      2


      ξ
      +
      φ
      )

      56.827

      663

      280


      94






      {\displaystyle \arccos(\varphi ^{2}\xi +\varphi )\approx 56.827\,663\,280\,94^{\circ }}

      and one of



      arccos

      (

      φ


      2


      ξ


      φ


      1


      )

      140.739

      123

      307


      76




      .


      {\displaystyle \arccos(\varphi ^{-2}\xi -\varphi ^{-1})\approx 140.739\,123\,307\,76^{\circ }.}

      Each face has one medium length edge, two short and two long ones. If the medium length is 2, then the short edges have length




      1
      +




      1

      ξ



      φ

      3



      ξ





      1.550

      761

      427

      20
      ,


      {\displaystyle 1+{\sqrt {\frac {1-\xi }{\varphi ^{3}-\xi }}}\approx 1.550\,761\,427\,20,}


      and the long edges have length




      1
      +




      1

      ξ




      φ


      3



      ξ





      3.854

      145

      870

      08.


      {\displaystyle 1+{\sqrt {\frac {1-\xi }{-\varphi ^{-3}-\xi }}}\approx 3.854\,145\,870\,08.}


      The dihedral angle equals



      arccos


      (



      ξ

      ξ
      +
      1




      )


      133.800

      984

      233


      53




      .


      {\displaystyle \arccos \left({\tfrac {\xi }{\xi +1}}\right)\approx 133.800\,984\,233\,53^{\circ }.}

      The other real zero of the polynomial P plays a similar role for the medial inverted pentagonal hexecontahedron.


      References


      Wenninger, Magnus (1983), Dual Models, Cambridge University Press, ISBN 978-0-521-54325-5, MR 0730208


      External links


      Weisstein, Eric W. "Medial pentagonal hexecontahedron". MathWorld.
      Uniform polyhedra and duals

    Kata Kunci Pencarian: