• Source: Mittag-Leffler polynomials
  • In mathematics, the Mittag-Leffler polynomials are the polynomials gn(x) or Mn(x) studied by Mittag-Leffler (1891).
    Mn(x) is a special case of the Meixner polynomial Mn(x;b,c) at b = 0, c = -1.


    Definition and examples




    = Generating functions

    =
    The Mittag-Leffler polynomials are defined respectively by the generating functions








    n
    =
    0






    g

    n


    (
    x
    )

    t

    n


    :=


    1
    2




    (





    1
    +
    t


    1

    t






    )



    x





    {\displaystyle \displaystyle \sum _{n=0}^{\infty }g_{n}(x)t^{n}:={\frac {1}{2}}{\Bigl (}{\frac {1+t}{1-t}}{\Bigr )}^{x}}

    and








    n
    =
    0






    M

    n


    (
    x
    )



    t

    n



    n
    !



    :=


    (





    1
    +
    t


    1

    t






    )



    x


    =
    (
    1
    +
    t

    )

    x


    (
    1

    t

    )


    x


    =
    exp

    (
    2
    x

    artanh

    t
    )
    .



    {\displaystyle \displaystyle \sum _{n=0}^{\infty }M_{n}(x){\frac {t^{n}}{n!}}:={\Bigl (}{\frac {1+t}{1-t}}{\Bigr )}^{x}=(1+t)^{x}(1-t)^{-x}=\exp(2x{\text{ artanh }}t).}


    They also have the bivariate generating function








    n
    =
    1








    m
    =
    1






    g

    n


    (
    m
    )

    x

    m



    y

    n


    =



    x
    y


    (
    1

    x
    )
    (
    1

    x

    y

    x
    y
    )



    .



    {\displaystyle \displaystyle \sum _{n=1}^{\infty }\sum _{m=1}^{\infty }g_{n}(m)x^{m}y^{n}={\frac {xy}{(1-x)(1-x-y-xy)}}.}



    = Examples

    =
    The first few polynomials are given in the following table. The coefficients of the numerators of the




    g

    n


    (
    x
    )


    {\displaystyle g_{n}(x)}

    can be found in the OEIS, though without any references, and the coefficients of the




    M

    n


    (
    x
    )


    {\displaystyle M_{n}(x)}

    are in the OEIS as well.


    Properties


    The polynomials are related by




    M

    n


    (
    x
    )
    =
    2


    n
    !



    g

    n


    (
    x
    )


    {\displaystyle M_{n}(x)=2\cdot {n!}\,g_{n}(x)}

    and we have




    g

    n


    (
    1
    )
    =
    1


    {\displaystyle g_{n}(1)=1}

    for



    n

    1


    {\displaystyle n\geqslant 1}

    . Also




    g

    2
    k


    (


    1
    2


    )
    =

    g

    2
    k
    +
    1


    (


    1
    2


    )
    =


    1
    2





    (
    2
    k

    1
    )
    !
    !


    (
    2
    k
    )
    !
    !



    =


    1
    2






    1

    3

    (
    2
    k

    1
    )


    2

    4

    (
    2
    k
    )





    {\displaystyle g_{2k}({\frac {1}{2}})=g_{2k+1}({\frac {1}{2}})={\frac {1}{2}}{\frac {(2k-1)!!}{(2k)!!}}={\frac {1}{2}}\cdot {\frac {1\cdot 3\cdots (2k-1)}{2\cdot 4\cdots (2k)}}}

    .


    = Explicit formulas

    =
    Explicit formulas are





    g

    n


    (
    x
    )
    =



    k
    =
    1


    n



    2

    k

    1





    (



    n

    1


    n

    k



    )






    (


    x
    k


    )



    =



    k
    =
    0


    n

    1



    2

    k





    (



    n

    1

    k


    )






    (


    x

    k
    +
    1



    )





    {\displaystyle g_{n}(x)=\sum _{k=1}^{n}2^{k-1}{\binom {n-1}{n-k}}{\binom {x}{k}}=\sum _{k=0}^{n-1}2^{k}{\binom {n-1}{k}}{\binom {x}{k+1}}}






    g

    n


    (
    x
    )
    =



    k
    =
    0


    n

    1





    (



    n

    1

    k


    )






    (



    k
    +
    x

    n


    )





    {\displaystyle g_{n}(x)=\sum _{k=0}^{n-1}{\binom {n-1}{k}}{\binom {k+x}{n}}}






    g

    n


    (
    m
    )
    =


    1
    2





    k
    =
    0


    m





    (


    m
    k


    )






    (



    n

    1
    +
    m

    k


    m

    1



    )



    =


    1
    2





    k
    =
    0


    min
    (
    n
    ,
    m
    )




    m

    n
    +
    m

    k






    (



    n
    +
    m

    k


    k
    ,
    n

    k
    ,
    m

    k



    )





    {\displaystyle g_{n}(m)={\frac {1}{2}}\sum _{k=0}^{m}{\binom {m}{k}}{\binom {n-1+m-k}{m-1}}={\frac {1}{2}}\sum _{k=0}^{\min(n,m)}{\frac {m}{n+m-k}}{\binom {n+m-k}{k,n-k,m-k}}}


    (the last one immediately shows



    n

    g

    n


    (
    m
    )
    =
    m

    g

    m


    (
    n
    )


    {\displaystyle ng_{n}(m)=mg_{m}(n)}

    , a kind of reflection formula), and





    M

    n


    (
    x
    )
    =
    (
    n

    1
    )
    !



    k
    =
    1


    n


    k

    2

    k





    (


    n
    k


    )






    (


    x
    k


    )





    {\displaystyle M_{n}(x)=(n-1)!\sum _{k=1}^{n}k2^{k}{\binom {n}{k}}{\binom {x}{k}}}

    , which can be also written as





    M

    n


    (
    x
    )
    =



    k
    =
    1


    n



    2

    k





    (


    n
    k


    )



    (
    n

    1

    )

    n

    k


    (
    x

    )

    k




    {\displaystyle M_{n}(x)=\sum _{k=1}^{n}2^{k}{\binom {n}{k}}(n-1)_{n-k}(x)_{k}}

    , where



    (
    x

    )

    n


    =
    n
    !



    (


    x
    n


    )



    =
    x
    (
    x

    1
    )

    (
    x

    n
    +
    1
    )


    {\displaystyle (x)_{n}=n!{\binom {x}{n}}=x(x-1)\cdots (x-n+1)}

    denotes the falling factorial.
    In terms of the Gaussian hypergeometric function, we have





    g

    n


    (
    x
    )
    =
    x







    2




    F

    1


    (
    1

    n
    ,
    1

    x
    ;
    2
    ;
    2
    )
    .


    {\displaystyle g_{n}(x)=x\!\cdot {}_{2}\!F_{1}(1-n,1-x;2;2).}



    = Reflection formula

    =
    As stated above, for



    m
    ,
    n


    N



    {\displaystyle m,n\in \mathbb {N} }

    , we have the reflection formula



    n

    g

    n


    (
    m
    )
    =
    m

    g

    m


    (
    n
    )


    {\displaystyle ng_{n}(m)=mg_{m}(n)}

    .


    = Recursion formulas

    =
    The polynomials




    M

    n


    (
    x
    )


    {\displaystyle M_{n}(x)}

    can be defined recursively by





    M

    n


    (
    x
    )
    =
    2
    x

    M

    n

    1


    (
    x
    )
    +
    (
    n

    1
    )
    (
    n

    2
    )

    M

    n

    2


    (
    x
    )


    {\displaystyle M_{n}(x)=2xM_{n-1}(x)+(n-1)(n-2)M_{n-2}(x)}

    , starting with




    M


    1


    (
    x
    )
    =
    0


    {\displaystyle M_{-1}(x)=0}

    and




    M

    0


    (
    x
    )
    =
    1


    {\displaystyle M_{0}(x)=1}

    .
    Another recursion formula, which produces an odd one from the preceding even ones and vice versa, is





    M

    n
    +
    1


    (
    x
    )
    =
    2
    x



    k
    =
    0



    n

    /

    2






    n
    !


    (
    n

    2
    k
    )
    !




    M

    n

    2
    k


    (
    x
    )


    {\displaystyle M_{n+1}(x)=2x\sum _{k=0}^{\lfloor n/2\rfloor }{\frac {n!}{(n-2k)!}}M_{n-2k}(x)}

    , again starting with




    M

    0


    (
    x
    )
    =
    1


    {\displaystyle M_{0}(x)=1}

    .

    As for the




    g

    n


    (
    x
    )


    {\displaystyle g_{n}(x)}

    , we have several different recursion formulas:





    (
    1
    )


    g

    n


    (
    x
    +
    1
    )


    g

    n

    1


    (
    x
    +
    1
    )
    =

    g

    n


    (
    x
    )
    +

    g

    n

    1


    (
    x
    )



    {\displaystyle \displaystyle (1)\quad g_{n}(x+1)-g_{n-1}(x+1)=g_{n}(x)+g_{n-1}(x)}






    (
    2
    )

    (
    n
    +
    1
    )

    g

    n
    +
    1


    (
    x
    )

    (
    n

    1
    )

    g

    n

    1


    (
    x
    )
    =
    2
    x

    g

    n


    (
    x
    )



    {\displaystyle \displaystyle (2)\quad (n+1)g_{n+1}(x)-(n-1)g_{n-1}(x)=2xg_{n}(x)}





    (
    3
    )

    x


    (



    g

    n


    (
    x
    +
    1
    )


    g

    n


    (
    x

    1
    )


    )


    =
    2
    n

    g

    n


    (
    x
    )


    {\displaystyle (3)\quad x{\Bigl (}g_{n}(x+1)-g_{n}(x-1){\Bigr )}=2ng_{n}(x)}





    (
    4
    )


    g

    n
    +
    1


    (
    m
    )
    =

    g

    n


    (
    m
    )
    +
    2



    k
    =
    1


    m

    1



    g

    n


    (
    k
    )
    =

    g

    n


    (
    1
    )
    +

    g

    n


    (
    2
    )
    +

    +

    g

    n


    (
    m
    )
    +

    g

    n


    (
    m

    1
    )
    +

    +

    g

    n


    (
    1
    )


    {\displaystyle (4)\quad g_{n+1}(m)=g_{n}(m)+2\sum _{k=1}^{m-1}g_{n}(k)=g_{n}(1)+g_{n}(2)+\cdots +g_{n}(m)+g_{n}(m-1)+\cdots +g_{n}(1)}


    Concerning recursion formula (3), the polynomial




    g

    n


    (
    x
    )


    {\displaystyle g_{n}(x)}

    is the unique polynomial solution of the difference equation



    x
    (
    f
    (
    x
    +
    1
    )

    f
    (
    x

    1
    )
    )
    =
    2
    n
    f
    (
    x
    )


    {\displaystyle x(f(x+1)-f(x-1))=2nf(x)}

    , normalized so that



    f
    (
    1
    )
    =
    1


    {\displaystyle f(1)=1}

    . Further note that (2) and (3) are dual to each other in the sense that for



    x


    N



    {\displaystyle x\in \mathbb {N} }

    , we can apply the reflection formula to one of the identities and then swap



    x


    {\displaystyle x}

    and



    n


    {\displaystyle n}

    to obtain the other one. (As the




    g

    n


    (
    x
    )


    {\displaystyle g_{n}(x)}

    are polynomials, the validity extends from natural to all real values of



    x


    {\displaystyle x}

    .)


    = Initial values

    =
    The table of the initial values of




    g

    n


    (
    m
    )


    {\displaystyle g_{n}(m)}

    (these values are also called the "figurate numbers for the n-dimensional cross polytopes" in the OEIS) may illustrate the recursion formula (1), which can be taken to mean that each entry is the sum of the three neighboring entries: to its left, above and above left, e.g.




    g

    5


    (
    3
    )
    =
    51
    =
    33
    +
    8
    +
    10


    {\displaystyle g_{5}(3)=51=33+8+10}

    . It also illustrates the reflection formula



    n

    g

    n


    (
    m
    )
    =
    m

    g

    m


    (
    n
    )


    {\displaystyle ng_{n}(m)=mg_{m}(n)}

    with respect to the main diagonal, e.g.



    3

    44
    =
    4

    33


    {\displaystyle 3\cdot 44=4\cdot 33}

    .


    = Orthogonality relations

    =
    For



    m
    ,
    n


    N



    {\displaystyle m,n\in \mathbb {N} }

    the following orthogonality relation holds:


















    g

    n


    (

    i
    y
    )

    g

    m


    (
    i
    y
    )


    y
    sinh

    π
    y



    d
    y
    =


    1

    2
    n




    δ

    m
    n


    .


    {\displaystyle \int _{-\infty }^{\infty }{\frac {g_{n}(-iy)g_{m}(iy)}{y\sinh \pi y}}dy={\frac {1}{2n}}\delta _{mn}.}


    (Note that this is not a complex integral. As each




    g

    n




    {\displaystyle g_{n}}

    is an even or an odd polynomial, the imaginary arguments just produce alternating signs for their coefficients. Moreover, if



    m


    {\displaystyle m}

    and



    n


    {\displaystyle n}

    have different parity, the integral vanishes trivially.)


    = Binomial identity

    =
    Being a Sheffer sequence of binomial type, the Mittag-Leffler polynomials




    M

    n


    (
    x
    )


    {\displaystyle M_{n}(x)}

    also satisfy the binomial identity





    M

    n


    (
    x
    +
    y
    )
    =



    k
    =
    0


    n





    (


    n
    k


    )




    M

    k


    (
    x
    )

    M

    n

    k


    (
    y
    )


    {\displaystyle M_{n}(x+y)=\sum _{k=0}^{n}{\binom {n}{k}}M_{k}(x)M_{n-k}(y)}

    .


    = Integral representations

    =
    Based on the representation as a hypergeometric function, there are several ways of representing




    g

    n


    (
    z
    )


    {\displaystyle g_{n}(z)}

    for




    |

    z

    |

    <
    1


    {\displaystyle |z|<1}

    directly as integrals, some of them being even valid for complex



    z


    {\displaystyle z}

    , e.g.




    (
    26
    )


    g

    n


    (
    z
    )
    =



    sin

    (
    π
    z
    )


    2
    π







    1


    1



    t

    n

    1




    (





    1
    +
    t


    1

    t






    )



    z


    d
    t


    {\displaystyle (26)\qquad g_{n}(z)={\frac {\sin(\pi z)}{2\pi }}\int _{-1}^{1}t^{n-1}{\Bigl (}{\frac {1+t}{1-t}}{\Bigr )}^{z}dt}





    (
    27
    )


    g

    n


    (
    z
    )
    =



    sin

    (
    π
    z
    )


    2
    π














    e

    u
    z





    (
    tanh



    u
    2



    )

    n




    sinh

    u



    d
    u


    {\displaystyle (27)\qquad g_{n}(z)={\frac {\sin(\pi z)}{2\pi }}\int _{-\infty }^{\infty }e^{uz}{\frac {(\tanh {\frac {u}{2}})^{n}}{\sinh u}}du}





    (
    32
    )


    g

    n


    (
    z
    )
    =


    1
    π





    0


    π



    cot

    z



    (


    u
    2


    )
    cos

    (



    π
    z

    2


    )
    cos

    (
    n
    u
    )
    d
    u


    {\displaystyle (32)\qquad g_{n}(z)={\frac {1}{\pi }}\int _{0}^{\pi }\cot ^{z}({\frac {u}{2}})\cos({\frac {\pi z}{2}})\cos(nu)du}





    (
    33
    )


    g

    n


    (
    z
    )
    =


    1
    π





    0


    π



    cot

    z



    (


    u
    2


    )
    sin

    (



    π
    z

    2


    )
    sin

    (
    n
    u
    )
    d
    u


    {\displaystyle (33)\qquad g_{n}(z)={\frac {1}{\pi }}\int _{0}^{\pi }\cot ^{z}({\frac {u}{2}})\sin({\frac {\pi z}{2}})\sin(nu)du}





    (
    34
    )


    g

    n


    (
    z
    )
    =


    1

    2
    π






    0


    2
    π


    (
    1
    +

    e

    i
    t



    )

    z


    (
    2
    +

    e

    i
    t



    )

    n

    1



    e


    i
    n
    t


    d
    t


    {\displaystyle (34)\qquad g_{n}(z)={\frac {1}{2\pi }}\int _{0}^{2\pi }(1+e^{it})^{z}(2+e^{it})^{n-1}e^{-int}dt}

    .


    = Closed forms of integral families

    =
    There are several families of integrals with closed-form expressions in terms of zeta values where the coefficients of the Mittag-Leffler polynomials occur as coefficients. All those integrals can be written in a form containing either a factor




    tan

    ±
    n




    {\displaystyle \tan ^{\pm n}}

    or




    tanh

    ±
    n




    {\displaystyle \tanh ^{\pm n}}

    , and the degree of the Mittag-Leffler polynomial varies with



    n


    {\displaystyle n}

    . One way to work out those integrals is to obtain for them the corresponding recursion formulas as for the Mittag-Leffler polynomials using integration by parts.
    1. For instance, define for



    n

    m

    2


    {\displaystyle n\geqslant m\geqslant 2}






    I
    (
    n
    ,
    m
    )
    :=



    0


    1








    artanh


    n


    x


    x

    m





    d
    x
    =



    0


    1



    log

    n

    /

    2





    (






    1
    +
    x


    1

    x






    )






    d
    x


    x

    m





    =



    0






    z

    n







    coth

    m

    2



    z



    sinh

    2



    z




    d
    z
    .


    {\displaystyle I(n,m):=\int _{0}^{1}{\dfrac {{\text{artanh}}^{n}x}{x^{m}}}dx=\int _{0}^{1}\log ^{n/2}{\Bigl (}{\dfrac {1+x}{1-x}}{\Bigr )}{\dfrac {dx}{x^{m}}}=\int _{0}^{\infty }z^{n}{\dfrac {\coth ^{m-2}z}{\sinh ^{2}z}}dz.}


    These integrals have the closed form




    (
    1
    )

    I
    (
    n
    ,
    m
    )
    =



    n
    !


    2

    n

    1





    ζ

    n
    +
    1




    g

    m

    1


    (


    1
    ζ


    )


    {\displaystyle (1)\quad I(n,m)={\frac {n!}{2^{n-1}}}\zeta ^{n+1}~g_{m-1}({\frac {1}{\zeta }})}


    in umbral notation, meaning that after expanding the polynomial in



    ζ


    {\displaystyle \zeta }

    , each power




    ζ

    k




    {\displaystyle \zeta ^{k}}

    has to be replaced by the zeta value



    ζ
    (
    k
    )


    {\displaystyle \zeta (k)}

    . E.g. from





    g

    6


    (
    x
    )
    =


    1
    45


    (
    23

    x

    2


    +
    20

    x

    4


    +
    2

    x

    6


    )



    {\displaystyle g_{6}(x)={\frac {1}{45}}(23x^{2}+20x^{4}+2x^{6})\ }

    we get





    I
    (
    n
    ,
    7
    )
    =



    n
    !


    2

    n

    1







    23

    ζ
    (
    n

    1
    )
    +
    20

    ζ
    (
    n

    3
    )
    +
    2

    ζ
    (
    n

    5
    )

    45





    {\displaystyle \ I(n,7)={\frac {n!}{2^{n-1}}}{\frac {23~\zeta (n-1)+20~\zeta (n-3)+2~\zeta (n-5)}{45}}\ }

    for



    n

    7


    {\displaystyle n\geqslant 7}

    .
    2. Likewise take for



    n

    m

    2


    {\displaystyle n\geqslant m\geqslant 2}





    J
    (
    n
    ,
    m
    )
    :=



    1











    arcoth


    n


    x


    x

    m





    d
    x
    =



    1






    log

    n

    /

    2





    (






    x
    +
    1


    x

    1






    )






    d
    x


    x

    m





    =



    0






    z

    n







    tanh

    m

    2



    z



    cosh

    2



    z




    d
    z
    .


    {\displaystyle J(n,m):=\int _{1}^{\infty }{\dfrac {{\text{arcoth}}^{n}x}{x^{m}}}dx=\int _{1}^{\infty }\log ^{n/2}{\Bigl (}{\dfrac {x+1}{x-1}}{\Bigr )}{\dfrac {dx}{x^{m}}}=\int _{0}^{\infty }z^{n}{\dfrac {\tanh ^{m-2}z}{\cosh ^{2}z}}dz.}


    In umbral notation, where after expanding,




    η

    k




    {\displaystyle \eta ^{k}}

    has to be replaced by the Dirichlet eta function



    η
    (
    k
    )
    :=

    (

    1


    2

    1

    k



    )

    ζ
    (
    k
    )


    {\displaystyle \eta (k):=\left(1-2^{1-k}\right)\zeta (k)}

    , those have the closed form




    (
    2
    )

    J
    (
    n
    ,
    m
    )
    =



    n
    !


    2

    n

    1





    η

    n
    +
    1




    g

    m

    1


    (


    1
    η


    )


    {\displaystyle (2)\quad J(n,m)={\frac {n!}{2^{n-1}}}\eta ^{n+1}~g_{m-1}({\frac {1}{\eta }})}

    .
    3. The following holds for



    n

    m


    {\displaystyle n\geqslant m}

    with the same umbral notation for



    ζ


    {\displaystyle \zeta }

    and



    η


    {\displaystyle \eta }

    , and completing by continuity



    η
    (
    1
    )
    :=
    ln

    2


    {\displaystyle \eta (1):=\ln 2}

    .




    (
    3
    )




    0


    π

    /

    2





    x

    n




    tan

    m



    x



    d
    x
    =
    cos



    (




    m
    2


    π


    )





    (
    π

    /

    2

    )

    n
    +
    1




    n
    +
    1



    +
    cos



    (





    m

    n

    1

    2


    π


    )





    n
    !

    m


    2

    n





    ζ

    n
    +
    2



    g

    m


    (


    1
    ζ


    )
    +



    v
    =
    0


    n


    cos



    (





    m

    v

    1

    2


    π


    )





    n
    !

    m


    π

    n

    v




    (
    n

    v
    )
    !


    2

    n






    η

    n
    +
    2



    g

    m


    (


    1
    η


    )
    .


    {\displaystyle (3)\quad \int \limits _{0}^{\pi /2}{\frac {x^{n}}{\tan ^{m}x}}dx=\cos {\Bigl (}{\frac {m}{2}}\pi {\Bigr )}{\frac {(\pi /2)^{n+1}}{n+1}}+\cos {\Bigl (}{\frac {m-n-1}{2}}\pi {\Bigr )}{\frac {n!~m}{2^{n}}}\zeta ^{n+2}g_{m}({\frac {1}{\zeta }})+\sum \limits _{v=0}^{n}\cos {\Bigl (}{\frac {m-v-1}{2}}\pi {\Bigr )}{\frac {n!~m~\pi ^{n-v}}{(n-v)!~2^{n}}}\eta ^{n+2}g_{m}({\frac {1}{\eta }}).}


    Note that for



    n

    m

    2


    {\displaystyle n\geqslant m\geqslant 2}

    , this also yields a closed form for the integrals







    0









    arctan

    n



    x


    x

    m




    d
    x
    =



    0


    π

    /

    2





    x

    n




    tan

    m



    x



    d
    x
    +



    0


    π

    /

    2





    x

    n




    tan

    m

    2



    x



    d
    x
    .


    {\displaystyle \int \limits _{0}^{\infty }{\frac {\arctan ^{n}x}{x^{m}}}dx=\int \limits _{0}^{\pi /2}{\frac {x^{n}}{\tan ^{m}x}}dx+\int \limits _{0}^{\pi /2}{\frac {x^{n}}{\tan ^{m-2}x}}dx.}


    4. For



    n

    m

    2


    {\displaystyle n\geqslant m\geqslant 2}

    , define




    K
    (
    n
    ,
    m
    )
    :=



    0










    tanh

    n



    (
    x
    )


    x

    m





    d
    x


    {\displaystyle \quad K(n,m):=\int \limits _{0}^{\infty }{\dfrac {\tanh ^{n}(x)}{x^{m}}}dx}

    .
    If



    n
    +
    m


    {\displaystyle n+m}

    is even and we define




    h

    k


    :=
    (

    1

    )



    k

    1

    2






    (
    k

    1
    )
    !
    (

    2

    k



    1
    )
    ζ
    (
    k
    )



    2

    k

    1



    π

    k

    1







    {\displaystyle h_{k}:=(-1)^{\frac {k-1}{2}}{\frac {(k-1)!(2^{k}-1)\zeta (k)}{2^{k-1}\pi ^{k-1}}}}

    , we have in umbral notation, i.e. replacing




    h

    k




    {\displaystyle h^{k}}

    by




    h

    k




    {\displaystyle h_{k}}

    ,




    (
    4
    )

    K
    (
    n
    ,
    m
    )
    :=



    0










    tanh

    n



    (
    x
    )


    x

    m





    d
    x
    =




    n


    2

    m

    1




    (
    m

    1
    )
    !




    (

    h

    )

    m

    1



    g

    n


    (
    h
    )
    .


    {\displaystyle (4)\quad K(n,m):=\int \limits _{0}^{\infty }{\dfrac {\tanh ^{n}(x)}{x^{m}}}dx={\dfrac {n\cdot 2^{m-1}}{(m-1)!}}(-h)^{m-1}g_{n}(h).}


    Note that only odd zeta values (odd



    k


    {\displaystyle k}

    ) occur here (unless the denominators are cast as even zeta values), e.g.




    K
    (
    5
    ,
    3
    )
    =



    2
    3


    (
    3

    h

    3


    +
    10

    h

    5


    +
    2

    h

    7


    )
    =

    7



    ζ
    (
    3
    )


    π

    2




    +
    310



    ζ
    (
    5
    )


    π

    4





    1905



    ζ
    (
    7
    )


    π

    6




    ,


    {\displaystyle K(5,3)=-{\frac {2}{3}}(3h_{3}+10h_{5}+2h_{7})=-7{\frac {\zeta (3)}{\pi ^{2}}}+310{\frac {\zeta (5)}{\pi ^{4}}}-1905{\frac {\zeta (7)}{\pi ^{6}}},}





    K
    (
    6
    ,
    2
    )
    =


    4
    15


    (
    23

    h

    3


    +
    20

    h

    5


    +
    2

    h

    7


    )
    ,

    K
    (
    6
    ,
    4
    )
    =


    4
    45


    (
    23

    h

    5


    +
    20

    h

    7


    +
    2

    h

    9


    )
    .


    {\displaystyle K(6,2)={\frac {4}{15}}(23h_{3}+20h_{5}+2h_{7}),\quad K(6,4)={\frac {4}{45}}(23h_{5}+20h_{7}+2h_{9}).}


    5. If



    n
    +
    m


    {\displaystyle n+m}

    is odd, the same integral is much more involved to evaluate, including the initial one






    0










    tanh

    3



    (
    x
    )


    x

    2





    d
    x


    {\displaystyle \int \limits _{0}^{\infty }{\dfrac {\tanh ^{3}(x)}{x^{2}}}dx}

    . Yet it turns out that the pattern subsists if we define




    s

    k


    :=

    η


    (

    k
    )
    =

    2

    k
    +
    1


    ζ
    (

    k
    )
    ln

    2

    (

    2

    k
    +
    1



    1
    )

    ζ


    (

    k
    )


    {\displaystyle s_{k}:=\eta '(-k)=2^{k+1}\zeta (-k)\ln 2-(2^{k+1}-1)\zeta '(-k)}

    , equivalently




    s

    k


    =



    ζ
    (

    k
    )



    ζ


    (

    k
    )



    η
    (

    k
    )
    +
    ζ
    (

    k
    )
    η
    (
    1
    )

    η
    (

    k
    )
    η
    (
    1
    )


    {\displaystyle s_{k}={\frac {\zeta (-k)}{\zeta '(-k)}}\eta (-k)+\zeta (-k)\eta (1)-\eta (-k)\eta (1)}

    . Then



    K
    (
    n
    ,
    m
    )


    {\displaystyle K(n,m)}

    has the following closed form in umbral notation, replacing




    s

    k




    {\displaystyle s^{k}}

    by




    s

    k




    {\displaystyle s_{k}}

    :




    (
    5
    )

    K
    (
    n
    ,
    m
    )
    =



    0










    tanh

    n



    (
    x
    )


    x

    m





    d
    x
    =



    n


    2

    m




    (
    m

    1
    )
    !



    (

    s

    )

    m

    2



    g

    n


    (
    s
    )


    {\displaystyle (5)\quad K(n,m)=\int \limits _{0}^{\infty }{\dfrac {\tanh ^{n}(x)}{x^{m}}}dx={\frac {n\cdot 2^{m}}{(m-1)!}}(-s)^{m-2}g_{n}(s)}

    , e.g.




    K
    (
    5
    ,
    4
    )
    =


    8
    9


    (
    3

    s

    3


    +
    10

    s

    5


    +
    2

    s

    7


    )
    ,

    K
    (
    6
    ,
    3
    )
    =



    8
    15


    (
    23

    s

    3


    +
    20

    s

    5


    +
    2

    s

    7


    )
    ,

    K
    (
    6
    ,
    5
    )
    =



    8
    45


    (
    23

    s

    5


    +
    20

    s

    7


    +
    2

    s

    9


    )
    .


    {\displaystyle K(5,4)={\frac {8}{9}}(3s_{3}+10s_{5}+2s_{7}),\quad K(6,3)=-{\frac {8}{15}}(23s_{3}+20s_{5}+2s_{7}),\quad K(6,5)=-{\frac {8}{45}}(23s_{5}+20s_{7}+2s_{9}).}


    Note that by virtue of the logarithmic derivative






    ζ


    ζ


    (
    s
    )
    +



    ζ


    ζ


    (
    1

    s
    )
    =
    log

    π



    1
    2





    Γ


    Γ



    (


    s
    2


    )




    1
    2





    Γ


    Γ



    (



    1

    s

    2


    )



    {\displaystyle {\frac {\zeta '}{\zeta }}(s)+{\frac {\zeta '}{\zeta }}(1-s)=\log \pi -{\frac {1}{2}}{\frac {\Gamma '}{\Gamma }}\left({\frac {s}{2}}\right)-{\frac {1}{2}}{\frac {\Gamma '}{\Gamma }}\left({\frac {1-s}{2}}\right)}

    of Riemann's functional equation, taken after applying Euler's reflection formula, these expressions in terms of the




    s

    k




    {\displaystyle s_{k}}

    can be written in terms of







    ζ


    (
    2
    j
    )


    ζ
    (
    2
    j
    )





    {\displaystyle {\frac {\zeta '(2j)}{\zeta (2j)}}}

    , e.g.




    K
    (
    5
    ,
    4
    )
    =


    8
    9


    (
    3

    s

    3


    +
    10

    s

    5


    +
    2

    s

    7


    )
    =


    1
    9



    {



    1643
    420





    16
    315


    ln

    2
    +
    3




    ζ


    (
    4
    )


    ζ
    (
    4
    )




    20




    ζ


    (
    6
    )


    ζ
    (
    6
    )



    +
    17




    ζ


    (
    8
    )


    ζ
    (
    8
    )




    }

    .


    {\displaystyle K(5,4)={\frac {8}{9}}(3s_{3}+10s_{5}+2s_{7})={\frac {1}{9}}\left\{{\frac {1643}{420}}-{\frac {16}{315}}\ln 2+3{\frac {\zeta '(4)}{\zeta (4)}}-20{\frac {\zeta '(6)}{\zeta (6)}}+17{\frac {\zeta '(8)}{\zeta (8)}}\right\}.}


    6. For



    n
    <
    m


    {\displaystyle n
    , the same integral



    K
    (
    n
    ,
    m
    )


    {\displaystyle K(n,m)}

    diverges because the integrand behaves like




    x

    n

    m




    {\displaystyle x^{n-m}}

    for



    x

    0


    {\displaystyle x\searrow 0}

    . But the difference of two such integrals with corresponding degree differences is well-defined and exhibits very similar patterns, e.g.




    (
    6
    )

    K
    (
    n

    1
    ,
    n
    )

    K
    (
    n
    ,
    n
    +
    1
    )
    =



    0






    (






    tanh

    n

    1



    (
    x
    )


    x

    n











    tanh

    n



    (
    x
    )


    x

    n
    +
    1






    )

    d
    x
    =



    1
    n


    +



    (
    n
    +
    1
    )


    2

    n




    (
    n

    1
    )
    !




    s

    n

    2



    g

    n


    (
    s
    )


    {\displaystyle (6)\quad K(n-1,n)-K(n,n+1)=\int \limits _{0}^{\infty }\left({\dfrac {\tanh ^{n-1}(x)}{x^{n}}}-{\dfrac {\tanh ^{n}(x)}{x^{n+1}}}\right)dx=-{\frac {1}{n}}+{\frac {(n+1)\cdot 2^{n}}{(n-1)!}}s^{n-2}g_{n}(s)}

    .


    See also


    Bernoulli polynomials of the second kind
    Stirling polynomials
    Poly-Bernoulli number


    References



    Bateman, H. (1940), "The polynomial of Mittag-Leffler" (PDF), Proceedings of the National Academy of Sciences of the United States of America, 26 (8): 491–496, Bibcode:1940PNAS...26..491B, doi:10.1073/pnas.26.8.491, ISSN 0027-8424, JSTOR 86958, MR 0002381, PMC 1078216, PMID 16588390
    Mittag-Leffler, G. (1891), "Sur la représentasion analytique des intégrales et des invariants d'une équation différentielle linéaire et homogène", Acta Mathematica (in French), XV: 1–32, doi:10.1007/BF02392600, ISSN 0001-5962, JFM 23.0327.01
    Stankovic, Miomir S.; Marinkovic, Sladjana D.; Rajkovic, Predrag M. (2010), Deformed MittagLeffler Polynomials, arXiv:1007.3612

Kata Kunci Pencarian: