• Source: Octic reciprocity
  • In number theory, octic reciprocity is a reciprocity law relating the residues of 8th powers modulo primes, analogous to the law of quadratic reciprocity, cubic reciprocity, and quartic reciprocity.
    There is a rational reciprocity law for 8th powers, due to Williams. Define the symbol





    (


    x
    p


    )


    k




    {\displaystyle \left({\frac {x}{p}}\right)_{k}}

    to be +1 if x is a k-th power modulo the prime p and -1 otherwise. Let p and q be distinct primes congruent to 1 modulo 8, such that





    (


    p
    q


    )


    4


    =


    (


    q
    p


    )


    4


    =
    +
    1.


    {\displaystyle \left({\frac {p}{q}}\right)_{4}=\left({\frac {q}{p}}\right)_{4}=+1.}

    Let p = a2 + b2 = c2 + 2d2 and q = A2 + B2 = C2 + 2D2, with aA odd. Then






    (


    p
    q


    )


    8




    (


    q
    p


    )


    8


    =


    (



    a
    B

    b
    A

    q


    )


    4




    (



    c
    D

    d
    C

    q


    )


    2



    .


    {\displaystyle \left({\frac {p}{q}}\right)_{8}\left({\frac {q}{p}}\right)_{8}=\left({\frac {aB-bA}{q}}\right)_{4}\left({\frac {cD-dC}{q}}\right)_{2}\ .}



    See also


    Artin reciprocity
    Eisenstein reciprocity


    References



    Lemmermeyer, Franz (2000), Reciprocity laws. From Euler to Eisenstein, Springer Monographs in Mathematics, Springer-Verlag, Berlin, pp. 289–316, ISBN 3-540-66957-4, MR 1761696, Zbl 0949.11002
    Williams, Kenneth S. (1976), "A rational octic reciprocity law", Pacific Journal of Mathematics, 63 (2): 563–570, doi:10.2140/pjm.1976.63.563, ISSN 0030-8730, MR 0414467, Zbl 0311.10004

Kata Kunci Pencarian: