- Source: Order of a kernel
In statistics, the order of a kernel is the degree of the first non-zero moment of a kernel.
Definitions
The literature knows two major definitions of the order of a kernel. Namely are:
= Definition 1
=Let
ℓ
≥
1
{\displaystyle \ell \geq 1}
be an integer. Then,
K
:
R
→
R
{\displaystyle K:\mathbb {R} \rightarrow \mathbb {R} }
is a kernel of order
ℓ
{\displaystyle \ell }
if the functions
u
↦
u
j
K
(
u
)
,
j
=
0
,
1
,
.
.
.
,
ℓ
{\displaystyle u\mapsto u^{j}K(u),~j=0,1,...,\ell }
are integrable and satisfy
∫
K
(
u
)
d
u
=
1
,
∫
u
j
K
(
u
)
d
u
=
0
,
j
=
1
,
.
.
.
,
ℓ
.
{\displaystyle \int K(u)du=1,~\int u^{j}K(u)du=0,~~j=1,...,\ell .}
= Definition 2
=References
Kata Kunci Pencarian:
- Kategori grup abelian
- PlayStation 2
- Aljabar linear
- Integral Dirichlet
- Bill Gates
- Presentasi grup
- Fork bomb
- Himpunan terurut parsial
- Jaringan saraf konvolusional
- Analitik prediktif
- Order of a kernel
- Kernel (operating system)
- Linux kernel
- Loadable kernel module
- Kernel (algebra)
- Kernel (category theory)
- Mach (kernel)
- Kernel density estimation
- Kernel panic
- Kernel regression