- Source: Pairwise Stone space
In mathematics and particularly in topology, pairwise Stone space is a bitopological space
(
X
,
τ
1
,
τ
2
)
{\displaystyle \scriptstyle (X,\tau _{1},\tau _{2})}
which is pairwise compact, pairwise Hausdorff, and pairwise zero-dimensional.
Pairwise Stone spaces are a bitopological version of the Stone spaces.
Pairwise Stone spaces are closely related to spectral spaces.
Theorem: If
(
X
,
τ
)
{\displaystyle \scriptstyle (X,\tau )}
is a spectral space, then
(
X
,
τ
,
τ
∗
)
{\displaystyle \scriptstyle (X,\tau ,\tau ^{*})}
is a pairwise Stone space, where
τ
∗
{\displaystyle \scriptstyle \tau ^{*}}
is the de Groot dual topology of
τ
{\displaystyle \scriptstyle \tau }
. Conversely, if
(
X
,
τ
1
,
τ
2
)
{\displaystyle \scriptstyle (X,\tau _{1},\tau _{2})}
is a pairwise Stone space, then both
(
X
,
τ
1
)
{\displaystyle \scriptstyle (X,\tau _{1})}
and
(
X
,
τ
2
)
{\displaystyle \scriptstyle (X,\tau _{2})}
are spectral spaces.
See also
Bitopological space
Duality theory for distributive lattices
Notes
Kata Kunci Pencarian:
- Pairwise Stone space
- Spectral space
- Priestley space
- Duality theory for distributive lattices
- Hilbert space
- Stone–von Neumann theorem
- Borromean rings
- Topological property
- Polyadic space
- Long line (topology)