• Source: Power residue symbol
    • In algebraic number theory the n-th power residue symbol (for an integer n > 2) is a generalization of the (quadratic) Legendre symbol to n-th powers. These symbols are used in the statement and proof of cubic, quartic, Eisenstein, and related higher reciprocity laws.


      Background and notation


      Let k be an algebraic number field with ring of integers






      O



      k




      {\displaystyle {\mathcal {O}}_{k}}

      that contains a primitive n-th root of unity




      ζ

      n


      .


      {\displaystyle \zeta _{n}.}


      Let





      p






      O



      k




      {\displaystyle {\mathfrak {p}}\subset {\mathcal {O}}_{k}}

      be a prime ideal and assume that n and





      p




      {\displaystyle {\mathfrak {p}}}

      are coprime (i.e.



      n



      p




      {\displaystyle n\not \in {\mathfrak {p}}}

      .)
      The norm of





      p




      {\displaystyle {\mathfrak {p}}}

      is defined as the cardinality of the residue class ring (note that since





      p




      {\displaystyle {\mathfrak {p}}}

      is prime the residue class ring is a finite field):





      N



      p


      :=

      |




      O



      k



      /



      p



      |

      .


      {\displaystyle \mathrm {N} {\mathfrak {p}}:=|{\mathcal {O}}_{k}/{\mathfrak {p}}|.}


      An analogue of Fermat's theorem holds in






      O



      k


      .


      {\displaystyle {\mathcal {O}}_{k}.}

      If



      α




      O



      k





      p


      ,


      {\displaystyle \alpha \in {\mathcal {O}}_{k}-{\mathfrak {p}},}

      then





      α


      N



      p



      1



      1

      mod


      p



      .


      {\displaystyle \alpha ^{\mathrm {N} {\mathfrak {p}}-1}\equiv 1{\bmod {\mathfrak {p}}}.}


      And finally, suppose




      N



      p



      1

      mod

      n


      .


      {\displaystyle \mathrm {N} {\mathfrak {p}}\equiv 1{\bmod {n}}.}

      These facts imply that





      α




      N



      p



      1

      n





      ζ

      n


      s



      mod


      p





      {\displaystyle \alpha ^{\frac {\mathrm {N} {\mathfrak {p}}-1}{n}}\equiv \zeta _{n}^{s}{\bmod {\mathfrak {p}}}}


      is well-defined and congruent to a unique



      n


      {\displaystyle n}

      -th root of unity




      ζ

      n


      s


      .


      {\displaystyle \zeta _{n}^{s}.}



      Definition


      This root of unity is called the n-th power residue symbol for






      O



      k


      ,


      {\displaystyle {\mathcal {O}}_{k},}

      and is denoted by






      (


      α

      p



      )


      n


      =

      ζ

      n


      s




      α




      N



      p



      1

      n




      mod


      p



      .


      {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}=\zeta _{n}^{s}\equiv \alpha ^{\frac {\mathrm {N} {\mathfrak {p}}-1}{n}}{\bmod {\mathfrak {p}}}.}



      Properties


      The n-th power symbol has properties completely analogous to those of the classical (quadratic) Jacobi symbol (



      ζ


      {\displaystyle \zeta }

      is a fixed primitive



      n


      {\displaystyle n}

      -th root of unity):






      (


      α

      p



      )


      n


      =


      {



      0


      α



      p






      1


      α



      p



      and


      η




      O



      k


      :
      α


      η

      n



      mod


      p







      ζ


      α



      p



      and there is no such

      η








      {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}={\begin{cases}0&\alpha \in {\mathfrak {p}}\\1&\alpha \not \in {\mathfrak {p}}{\text{ and }}\exists \eta \in {\mathcal {O}}_{k}:\alpha \equiv \eta ^{n}{\bmod {\mathfrak {p}}}\\\zeta &\alpha \not \in {\mathfrak {p}}{\text{ and there is no such }}\eta \end{cases}}}


      In all cases (zero and nonzero)






      (


      α

      p



      )


      n




      α




      N



      p



      1

      n




      mod


      p



      .


      {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}\equiv \alpha ^{\frac {\mathrm {N} {\mathfrak {p}}-1}{n}}{\bmod {\mathfrak {p}}}.}







      (


      α

      p



      )


      n




      (


      β

      p



      )


      n


      =


      (



      α
      β


      p



      )


      n




      {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}\left({\frac {\beta }{\mathfrak {p}}}\right)_{n}=\left({\frac {\alpha \beta }{\mathfrak {p}}}\right)_{n}}





      α

      β

      mod


      p








      (


      α

      p



      )


      n


      =


      (


      β

      p



      )


      n




      {\displaystyle \alpha \equiv \beta {\bmod {\mathfrak {p}}}\quad \Rightarrow \quad \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}=\left({\frac {\beta }{\mathfrak {p}}}\right)_{n}}


      All power residue symbols mod n are Dirichlet characters mod n, and the m-th power residue symbol only contains the m-th roots of unity, the m-th power residue symbol mod n exists if and only if m divides



      λ
      (
      n
      )


      {\displaystyle \lambda (n)}

      (the Carmichael lambda function of n).


      Relation to the Hilbert symbol


      The n-th power residue symbol is related to the Hilbert symbol



      (

      ,


      )


      p





      {\displaystyle (\cdot ,\cdot )_{\mathfrak {p}}}

      for the prime





      p




      {\displaystyle {\mathfrak {p}}}

      by






      (


      α

      p



      )


      n


      =
      (
      π
      ,
      α

      )


      p





      {\displaystyle \left({\frac {\alpha }{\mathfrak {p}}}\right)_{n}=(\pi ,\alpha )_{\mathfrak {p}}}


      in the case





      p




      {\displaystyle {\mathfrak {p}}}

      coprime to n, where



      π


      {\displaystyle \pi }

      is any uniformising element for the local field




      K


      p





      {\displaystyle K_{\mathfrak {p}}}

      .


      Generalizations


      The



      n


      {\displaystyle n}

      -th power symbol may be extended to take non-prime ideals or non-zero elements as its "denominator", in the same way that the Jacobi symbol extends the Legendre symbol.
      Any ideal





      a






      O



      k




      {\displaystyle {\mathfrak {a}}\subset {\mathcal {O}}_{k}}

      is the product of prime ideals, and in one way only:






      a


      =



      p



      1






      p



      g


      .


      {\displaystyle {\mathfrak {a}}={\mathfrak {p}}_{1}\cdots {\mathfrak {p}}_{g}.}


      The



      n


      {\displaystyle n}

      -th power symbol is extended multiplicatively:






      (


      α

      a



      )


      n


      =


      (


      α



      p



      1




      )


      n





      (


      α



      p



      g




      )


      n


      .


      {\displaystyle \left({\frac {\alpha }{\mathfrak {a}}}\right)_{n}=\left({\frac {\alpha }{{\mathfrak {p}}_{1}}}\right)_{n}\cdots \left({\frac {\alpha }{{\mathfrak {p}}_{g}}}\right)_{n}.}


      For



      0

      β




      O



      k




      {\displaystyle 0\neq \beta \in {\mathcal {O}}_{k}}

      then we define






      (


      α
      β


      )


      n


      :=


      (


      α

      (
      β
      )



      )


      n


      ,


      {\displaystyle \left({\frac {\alpha }{\beta }}\right)_{n}:=\left({\frac {\alpha }{(\beta )}}\right)_{n},}


      where



      (
      β
      )


      {\displaystyle (\beta )}

      is the principal ideal generated by



      β
      .


      {\displaystyle \beta .}


      Analogous to the quadratic Jacobi symbol, this symbol is multiplicative in the top and bottom parameters.

      If



      α

      β

      mod


      a





      {\displaystyle \alpha \equiv \beta {\bmod {\mathfrak {a}}}}

      then





      (



      α

      a




      )


      n


      =


      (



      β

      a




      )


      n


      .


      {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}=\left({\tfrac {\beta }{\mathfrak {a}}}\right)_{n}.}







      (



      α

      a




      )


      n




      (



      β

      a




      )


      n


      =


      (




      α
      β


      a




      )


      n


      .


      {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}\left({\tfrac {\beta }{\mathfrak {a}}}\right)_{n}=\left({\tfrac {\alpha \beta }{\mathfrak {a}}}\right)_{n}.}







      (



      α

      a




      )


      n




      (



      α

      b




      )


      n


      =


      (



      α

      a
      b




      )


      n


      .


      {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}\left({\tfrac {\alpha }{\mathfrak {b}}}\right)_{n}=\left({\tfrac {\alpha }{\mathfrak {ab}}}\right)_{n}.}


      Since the symbol is always an



      n


      {\displaystyle n}

      -th root of unity, because of its multiplicativity it is equal to 1 whenever one parameter is an



      n


      {\displaystyle n}

      -th power; the converse is not true.

      If



      α


      η

      n



      mod


      a





      {\displaystyle \alpha \equiv \eta ^{n}{\bmod {\mathfrak {a}}}}

      then





      (



      α

      a




      )


      n


      =
      1.


      {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}=1.}


      If





      (



      α

      a




      )


      n



      1


      {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}\neq 1}

      then



      α


      {\displaystyle \alpha }

      is not an



      n


      {\displaystyle n}

      -th power modulo





      a


      .


      {\displaystyle {\mathfrak {a}}.}


      If





      (



      α

      a




      )


      n


      =
      1


      {\displaystyle \left({\tfrac {\alpha }{\mathfrak {a}}}\right)_{n}=1}

      then



      α


      {\displaystyle \alpha }

      may or may not be an



      n


      {\displaystyle n}

      -th power modulo





      a


      .


      {\displaystyle {\mathfrak {a}}.}



      Power reciprocity law


      The power reciprocity law, the analogue of the law of quadratic reciprocity, may be formulated in terms of the Hilbert symbols as






      (


      α
      β


      )


      n




      (


      β
      α


      )


      n



      1


      =





      p



      |

      n



      (
      α
      ,
      β

      )


      p



      ,


      {\displaystyle \left({\frac {\alpha }{\beta }}\right)_{n}\left({\frac {\beta }{\alpha }}\right)_{n}^{-1}=\prod _{{\mathfrak {p}}|n\infty }(\alpha ,\beta )_{\mathfrak {p}},}


      whenever



      α


      {\displaystyle \alpha }

      and



      β


      {\displaystyle \beta }

      are coprime.


      See also


      Modular_arithmetic#Residue_class
      Quadratic_residue#Prime_power_modulus
      Artin symbol
      Gauss's lemma


      Notes




      References


      Gras, Georges (2003), Class field theory. From theory to practice, Springer Monographs in Mathematics, Berlin: Springer-Verlag, pp. 204–207, ISBN 3-540-44133-6, Zbl 1019.11032
      Ireland, Kenneth; Rosen, Michael (1990), A Classical Introduction to Modern Number Theory (Second edition), New York: Springer Science+Business Media, ISBN 0-387-97329-X
      Lemmermeyer, Franz (2000), Reciprocity Laws: from Euler to Eisenstein, Springer Monographs in Mathematics, Berlin: Springer Science+Business Media, doi:10.1007/978-3-662-12893-0, ISBN 3-540-66957-4, MR 1761696, Zbl 0949.11002
      Neukirch, Jürgen (1999), Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, vol. 322, Translated from the German by Norbert Schappacher, Berlin: Springer-Verlag, ISBN 3-540-65399-6, Zbl 0956.11021

    Kata Kunci Pencarian: