- Source: Quantum invariant
In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.
List of invariants
Finite type invariant
Kontsevich invariant
Kashaev's invariant
Witten–Reshetikhin–Turaev invariant (Chern–Simons)
Invariant differential operator
Rozansky–Witten invariant
Vassiliev knot invariant
Dehn invariant
LMO invariant
Turaev–Viro invariant
Dijkgraaf–Witten invariant
Reshetikhin–Turaev invariant
Tau-invariant
I-Invariant
Klein J-invariant
Quantum isotopy invariant
Ermakov–Lewis invariant
Hermitian invariant
Goussarov–Habiro theory of finite-type invariant
Linear quantum invariant (orthogonal function invariant)
Murakami–Ohtsuki TQFT
Generalized Casson invariant
Casson-Walker invariant
Khovanov–Rozansky invariant
HOMFLY polynomial
K-theory invariants
Atiyah–Patodi–Singer eta invariant
Link invariant
Casson invariant
Seiberg–Witten invariants
Gromov–Witten invariant
Arf invariant
Hopf invariant
See also
Invariant theory
Framed knot
Chern–Simons theory
Algebraic geometry
Seifert surface
Geometric invariant theory
References
Further reading
Freedman, Michael H. (1990). Topology of 4-manifolds. Princeton, N.J: Princeton University Press. ISBN 978-0691085777. OL 2220094M.
Ohtsuki, Tomotada (December 2001). Quantum Invariants. World Scientific Publishing Company. ISBN 9789810246754. OL 9195378M.
External links
Quantum invariants of knots and 3-manifolds By Vladimir G. Turaev
Kata Kunci Pencarian:
- Elektrodinamika kuantum
- Geometri simplektik
- Tian Gang
- Garis waktu peristiwa jauh di masa depan
- Grup (matematika)
- Quantum invariant
- Adiabatic invariant
- Scale invariance
- Quantum fluctuation
- Loop quantum gravity
- Topological quantum field theory
- Concurrence (quantum computing)
- HOMFLY polynomial
- Scalar field theory
- Total angular momentum quantum number