• Source: Rank factorization
    • In mathematics, given a field




      F



      {\displaystyle \mathbb {F} }

      , nonnegative integers



      m
      ,
      n


      {\displaystyle m,n}

      , and a matrix



      A



      F


      m
      ×
      n




      {\displaystyle A\in \mathbb {F} ^{m\times n}}

      , a rank decomposition or rank factorization of A is a factorization of A of the form A = CF, where



      C



      F


      m
      ×
      r




      {\displaystyle C\in \mathbb {F} ^{m\times r}}

      and



      F



      F


      r
      ×
      n




      {\displaystyle F\in \mathbb {F} ^{r\times n}}

      , where



      r
      =
      rank

      A


      {\displaystyle r=\operatorname {rank} A}

      is the rank of



      A


      {\displaystyle A}

      .


      Existence


      Every finite-dimensional matrix has a rank decomposition: Let



      A


      {\textstyle A}

      be an



      m
      ×
      n


      {\textstyle m\times n}

      matrix whose column rank is



      r


      {\textstyle r}

      . Therefore, there are



      r


      {\textstyle r}

      linearly independent columns in



      A


      {\textstyle A}

      ; equivalently, the dimension of the column space of



      A


      {\textstyle A}

      is



      r


      {\textstyle r}

      . Let





      c


      1


      ,


      c


      2


      ,

      ,


      c


      r




      {\textstyle \mathbf {c} _{1},\mathbf {c} _{2},\ldots ,\mathbf {c} _{r}}

      be any basis for the column space of



      A


      {\textstyle A}

      and place them as column vectors to form the



      m
      ×
      r


      {\textstyle m\times r}

      matrix



      C
      =


      [





      c


      1






      c


      2









      c


      r





      ]




      {\textstyle C={\begin{bmatrix}\mathbf {c} _{1}&\mathbf {c} _{2}&\cdots &\mathbf {c} _{r}\end{bmatrix}}}

      . Therefore, every column vector of



      A


      {\textstyle A}

      is a linear combination of the columns of



      C


      {\textstyle C}

      . To be precise, if



      A
      =


      [





      a


      1






      a


      2









      a


      n





      ]




      {\textstyle A={\begin{bmatrix}\mathbf {a} _{1}&\mathbf {a} _{2}&\cdots &\mathbf {a} _{n}\end{bmatrix}}}

      is an



      m
      ×
      n


      {\textstyle m\times n}

      matrix with





      a


      j




      {\textstyle \mathbf {a} _{j}}

      as the



      j


      {\textstyle j}

      -th column, then






      a


      j


      =

      f

      1
      j




      c


      1


      +

      f

      2
      j




      c


      2


      +

      +

      f

      r
      j




      c


      r


      ,


      {\displaystyle \mathbf {a} _{j}=f_{1j}\mathbf {c} _{1}+f_{2j}\mathbf {c} _{2}+\cdots +f_{rj}\mathbf {c} _{r},}


      where




      f

      i
      j




      {\textstyle f_{ij}}

      's are the scalar coefficients of





      a


      j




      {\textstyle \mathbf {a} _{j}}

      in terms of the basis





      c


      1


      ,


      c


      2


      ,

      ,


      c


      r




      {\textstyle \mathbf {c} _{1},\mathbf {c} _{2},\ldots ,\mathbf {c} _{r}}

      . This implies that



      A
      =
      C
      F


      {\textstyle A=CF}

      , where




      f

      i
      j




      {\textstyle f_{ij}}

      is the



      (
      i
      ,
      j
      )


      {\textstyle (i,j)}

      -th element of



      F


      {\textstyle F}

      .


      Non-uniqueness


      If



      A
      =

      C

      1



      F

      1




      {\textstyle A=C_{1}F_{1}}

      is a rank factorization, taking




      C

      2


      =

      C

      1


      R


      {\textstyle C_{2}=C_{1}R}

      and





      F

      2


      =

      R


      1



      F

      1




      {\textstyle F_{2}=R^{-1}F_{1}}

      gives another rank factorization for any invertible matrix



      R


      {\textstyle R}

      of compatible dimensions.
      Conversely, if



      A
      =

      F

      1



      G

      1


      =

      F

      2



      G

      2




      {\textstyle A=F_{1}G_{1}=F_{2}G_{2}}

      are two rank factorizations of



      A


      {\textstyle A}

      , then there exists an invertible matrix



      R


      {\textstyle R}

      such that




      F

      1


      =

      F

      2


      R


      {\textstyle F_{1}=F_{2}R}

      and




      G

      1


      =

      R


      1



      G

      2




      {\textstyle G_{1}=R^{-1}G_{2}}

      .


      Construction




      = Rank factorization from reduced row echelon forms

      =
      In practice, we can construct one specific rank factorization as follows: we can compute



      B


      {\textstyle B}

      , the reduced row echelon form of



      A


      {\textstyle A}

      . Then



      C


      {\textstyle C}

      is obtained by removing from



      A


      {\textstyle A}

      all non-pivot columns (which can be determined by looking for columns in



      B


      {\textstyle B}

      which do not contain a pivot), and



      F


      {\textstyle F}

      is obtained by eliminating any all-zero rows of



      B


      {\textstyle B}

      .
      Note: For a full-rank square matrix (i.e. when



      n
      =
      m
      =
      r


      {\textstyle n=m=r}

      ), this procedure will yield the trivial result



      C
      =
      A


      {\textstyle C=A}

      and



      F
      =
      B
      =

      I

      n




      {\textstyle F=B=I_{n}}

      (the



      n
      ×
      n


      {\textstyle n\times n}

      identity matrix).


      Example


      Consider the matrix




      A
      =


      [



      1


      3


      1


      4




      2


      7


      3


      9




      1


      5


      3


      1




      1


      2


      0


      8



      ]





      [



      1


      0



      2


      0




      0


      1


      1


      0




      0


      0


      0


      1




      0


      0


      0


      0



      ]


      =
      B

      .



      {\displaystyle A={\begin{bmatrix}1&3&1&4\\2&7&3&9\\1&5&3&1\\1&2&0&8\end{bmatrix}}\sim {\begin{bmatrix}1&0&-2&0\\0&1&1&0\\0&0&0&1\\0&0&0&0\end{bmatrix}}=B{\text{.}}}





      B


      {\textstyle B}

      is in reduced echelon form.
      Then



      C


      {\textstyle C}

      is obtained by removing the third column of



      A


      {\textstyle A}

      , the only one which is not a pivot column, and



      F


      {\textstyle F}

      by getting rid of the last row of zeroes from



      B


      {\textstyle B}

      , so




      C
      =


      [



      1


      3


      4




      2


      7


      9




      1


      5


      1




      1


      2


      8



      ]



      ,


      F
      =


      [



      1


      0



      2


      0




      0


      1


      1


      0




      0


      0


      0


      1



      ]



      .



      {\displaystyle C={\begin{bmatrix}1&3&4\\2&7&9\\1&5&1\\1&2&8\end{bmatrix}}{\text{,}}\qquad F={\begin{bmatrix}1&0&-2&0\\0&1&1&0\\0&0&0&1\end{bmatrix}}{\text{.}}}


      It is straightforward to check that




      A
      =


      [



      1


      3


      1


      4




      2


      7


      3


      9




      1


      5


      3


      1




      1


      2


      0


      8



      ]


      =


      [



      1


      3


      4




      2


      7


      9




      1


      5


      1




      1


      2


      8



      ]




      [



      1


      0



      2


      0




      0


      1


      1


      0




      0


      0


      0


      1



      ]


      =
      C
      F

      .



      {\displaystyle A={\begin{bmatrix}1&3&1&4\\2&7&3&9\\1&5&3&1\\1&2&0&8\end{bmatrix}}={\begin{bmatrix}1&3&4\\2&7&9\\1&5&1\\1&2&8\end{bmatrix}}{\begin{bmatrix}1&0&-2&0\\0&1&1&0\\0&0&0&1\end{bmatrix}}=CF{\text{.}}}



      Proof


      Let



      P


      {\textstyle P}

      be an



      n
      ×
      n


      {\textstyle n\times n}

      permutation matrix such that



      A
      P
      =
      (
      C
      ,
      D
      )


      {\textstyle AP=(C,D)}

      in block partitioned form, where the columns of



      C


      {\textstyle C}

      are the



      r


      {\textstyle r}

      pivot columns of



      A


      {\textstyle A}

      . Every column of



      D


      {\textstyle D}

      is a linear combination of the columns of



      C


      {\textstyle C}

      , so there is a matrix



      G


      {\textstyle G}

      such that



      D
      =
      C
      G


      {\textstyle D=CG}

      , where the columns of



      G


      {\textstyle G}

      contain the coefficients of each of those linear combinations. So



      A
      P
      =
      (
      C
      ,
      C
      G
      )
      =
      C
      (

      I

      r


      ,
      G
      )


      {\textstyle AP=(C,CG)=C(I_{r},G)}

      ,




      I

      r




      {\textstyle I_{r}}

      being the



      r
      ×
      r


      {\textstyle r\times r}

      identity matrix. We will show now that



      (

      I

      r


      ,
      G
      )
      =
      F
      P


      {\textstyle (I_{r},G)=FP}

      .
      Transforming



      A


      {\textstyle A}

      into its reduced row echelon form



      B


      {\textstyle B}

      amounts to left-multiplying by a matrix



      E


      {\textstyle E}

      which is a product of elementary matrices, so



      E
      A
      P
      =
      B
      P
      =
      E
      C
      (

      I

      r


      ,
      G
      )


      {\textstyle EAP=BP=EC(I_{r},G)}

      , where



      E
      C
      =


      (




      I

      r






      0



      )




      {\textstyle EC={\begin{pmatrix}I_{r}\\0\end{pmatrix}}}

      . We then can write



      B
      P
      =


      (




      I

      r




      G




      0


      0



      )




      {\textstyle BP={\begin{pmatrix}I_{r}&G\\0&0\end{pmatrix}}}

      , which allows us to identify



      (

      I

      r


      ,
      G
      )
      =
      F
      P


      {\textstyle (I_{r},G)=FP}

      , i.e. the nonzero



      r


      {\textstyle r}

      rows of the reduced echelon form, with the same permutation on the columns as we did for



      A


      {\textstyle A}

      . We thus have



      A
      P
      =
      C
      F
      P


      {\textstyle AP=CFP}

      , and since



      P


      {\textstyle P}

      is invertible this implies



      A
      =
      C
      F


      {\textstyle A=CF}

      , and the proof is complete.


      = Singular value decomposition

      =
      If




      F


      {

      R

      ,

      C

      }
      ,


      {\displaystyle \mathbb {F} \in \{\mathbb {R} ,\mathbb {C} \},}

      then one can also construct a full-rank factorization of



      A


      {\textstyle A}

      via a singular value decomposition




      A
      =
      U
      Σ

      V




      =


      [




      U

      1





      U

      2





      ]




      [




      Σ

      r




      0




      0


      0



      ]




      [




      V

      1










      V

      2








      ]


      =

      U

      1



      (


      Σ

      r



      V

      1






      )

      .


      {\displaystyle A=U\Sigma V^{*}={\begin{bmatrix}U_{1}&U_{2}\end{bmatrix}}{\begin{bmatrix}\Sigma _{r}&0\\0&0\end{bmatrix}}{\begin{bmatrix}V_{1}^{*}\\V_{2}^{*}\end{bmatrix}}=U_{1}\left(\Sigma _{r}V_{1}^{*}\right).}


      Since




      U

      1




      {\textstyle U_{1}}

      is a full-column-rank matrix and




      Σ

      r



      V

      1







      {\textstyle \Sigma _{r}V_{1}^{*}}

      is a full-row-rank matrix, we can take



      C
      =

      U

      1




      {\textstyle C=U_{1}}

      and



      F
      =

      Σ

      r



      V

      1







      {\textstyle F=\Sigma _{r}V_{1}^{*}}

      .


      Consequences




      = rank(A) = rank(AT)

      =

      An immediate consequence of rank factorization is that the rank of



      A


      {\textstyle A}

      is equal to the rank of its transpose




      A


      T





      {\textstyle A^{\textsf {T}}}

      . Since the columns of



      A


      {\textstyle A}

      are the rows of




      A


      T





      {\textstyle A^{\textsf {T}}}

      , the column rank of



      A


      {\textstyle A}

      equals its row rank.
      Proof: To see why this is true, let us first define rank to mean column rank. Since



      A
      =
      C
      F


      {\textstyle A=CF}

      , it follows that




      A


      T



      =

      F


      T




      C


      T





      {\textstyle A^{\textsf {T}}=F^{\textsf {T}}C^{\textsf {T}}}

      . From the definition of matrix multiplication, this means that each column of




      A


      T





      {\textstyle A^{\textsf {T}}}

      is a linear combination of the columns of




      F


      T





      {\textstyle F^{\textsf {T}}}

      . Therefore, the column space of




      A


      T





      {\textstyle A^{\textsf {T}}}

      is contained within the column space of




      F


      T





      {\textstyle F^{\textsf {T}}}

      and, hence,



      rank


      (

      A


      T



      )


      rank


      (

      F


      T



      )



      {\textstyle \operatorname {rank} \left(A^{\textsf {T}}\right)\leq \operatorname {rank} \left(F^{\textsf {T}}\right)}

      .
      Now,




      F


      T





      {\textstyle F^{\textsf {T}}}

      is



      n
      ×
      r


      {\textstyle n\times r}

      , so there are



      r


      {\textstyle r}

      columns in




      F


      T





      {\textstyle F^{\textsf {T}}}

      and, hence,



      rank


      (

      A


      T



      )


      r
      =
      rank


      (
      A
      )



      {\textstyle \operatorname {rank} \left(A^{\textsf {T}}\right)\leq r=\operatorname {rank} \left(A\right)}

      . This proves that



      rank


      (

      A


      T



      )


      rank


      (
      A
      )



      {\textstyle \operatorname {rank} \left(A^{\textsf {T}}\right)\leq \operatorname {rank} \left(A\right)}

      .
      Now apply the result to




      A


      T





      {\textstyle A^{\textsf {T}}}

      to obtain the reverse inequality: since





      (

      A


      T



      )



      T



      =
      A


      {\textstyle \left(A^{\textsf {T}}\right)^{\textsf {T}}=A}

      , we can write



      rank


      (
      A
      )

      =
      rank


      (


      (

      A


      T



      )



      T



      )


      rank


      (

      A


      T



      )



      {\textstyle \operatorname {rank} \left(A\right)=\operatorname {rank} \left(\left(A^{\textsf {T}}\right)^{\textsf {T}}\right)\leq \operatorname {rank} \left(A^{\textsf {T}}\right)}

      . This proves



      rank


      (
      A
      )


      rank


      (

      A


      T



      )



      {\textstyle \operatorname {rank} \left(A\right)\leq \operatorname {rank} \left(A^{\textsf {T}}\right)}

      .
      We have, therefore, proved



      rank


      (

      A


      T



      )


      rank


      (
      A
      )



      {\textstyle \operatorname {rank} \left(A^{\textsf {T}}\right)\leq \operatorname {rank} \left(A\right)}

      and



      rank


      (
      A
      )


      rank


      (

      A


      T



      )



      {\textstyle \operatorname {rank} \left(A\right)\leq \operatorname {rank} \left(A^{\textsf {T}}\right)}

      , so



      rank


      (
      A
      )

      =
      rank


      (

      A


      T



      )



      {\textstyle \operatorname {rank} \left(A\right)=\operatorname {rank} \left(A^{\textsf {T}}\right)}

      .


      Notes




      References

    Kata Kunci Pencarian: