- Source: Raynaud surface
In mathematics, a Raynaud surface is a particular kind of algebraic surface that was introduced in William E. Lang (1979) and named for Michel Raynaud (1978). To be precise, a Raynaud surface is a quasi-elliptic surface over an algebraic curve of genus g greater than 1, such that all fibers are irreducible and the fibration has a section. The Kodaira vanishing theorem fails for such surfaces; in other words the Kodaira theorem, valid in algebraic geometry over the complex numbers, has such surfaces as counterexamples, and these can only exist in characteristic p.
Generalized Raynaud surfaces were introduced in (Lang 1983), and give examples of surfaces of general type with global vector fields.
References
Lang, William E. (1979), "Quasi-elliptic surfaces in characteristic three", Annales Scientifiques de l'École Normale Supérieure, Série 4, 12 (4): 473–500, ISSN 0012-9593, MR 0565468
Lang, William E. (1983), "Examples of surfaces of general type with vector fields", Arithmetic and geometry, Vol. II, Progress in Mathematics, vol. 36, Boston, MA: Birkhäuser Boston, pp. 167–173, MR 0717611
Raynaud, Michel (1978), "Contre-exemple au "vanishing theorem" en caractéristique
p
>
0
{\displaystyle p>0}
", C. P. Ramanujam—a tribute, Tata Inst. Fund. Res. Studies in Math., vol. 8, Berlin, New York: Springer-Verlag, pp. 273–278, MR 0541027
Kata Kunci Pencarian:
- Raynaud surface
- Raynaud syndrome
- Raynaud
- CREST syndrome
- Michel Raynaud
- List of complex and algebraic surfaces
- Global surface temperature
- Bogomolov–Miyaoka–Yau inequality
- Kodaira vanishing theorem
- Algebraic geometry and analytic geometry