- Source: Reciprocal gamma function
In mathematics, the reciprocal gamma function is the function
f
(
z
)
=
1
Γ
(
z
)
,
{\displaystyle f(z)={\frac {1}{\Gamma (z)}},}
where Γ(z) denotes the gamma function. Since the gamma function is meromorphic and nonzero everywhere in the complex plane, its reciprocal is an entire function. As an entire function, it is of order 1 (meaning that log log |1/Γ(z)| grows no faster than log |z|), but of infinite type (meaning that log |1/Γ(z)| grows faster than any multiple of |z|, since its growth is approximately proportional to |z| log |z| in the left-half plane).
The reciprocal is sometimes used as a starting point for numerical computation of the gamma function, and a few software libraries provide it separately from the regular gamma function.
Karl Weierstrass called the reciprocal gamma function the "factorielle" and used it in his development of the Weierstrass factorization theorem.
Infinite product expansion
Following from the infinite product definitions for the gamma function, due to Euler and Weierstrass respectively, we get the following infinite product expansion for the reciprocal gamma function:
1
Γ
(
z
)
=
z
∏
n
=
1
∞
1
+
z
n
(
1
+
1
n
)
z
1
Γ
(
z
)
=
z
e
γ
z
∏
n
=
1
∞
(
1
+
z
n
)
e
−
z
n
{\displaystyle {\begin{aligned}{\frac {1}{\Gamma (z)}}&=z\prod _{n=1}^{\infty }{\frac {1+{\frac {z}{n}}}{\left(1+{\frac {1}{n}}\right)^{z}}}\\{\frac {1}{\Gamma (z)}}&=ze^{\gamma z}\prod _{n=1}^{\infty }\left(1+{\frac {z}{n}}\right)e^{-{\frac {z}{n}}}\end{aligned}}}
where γ = 0.577216... is the Euler–Mascheroni constant. These expansions are valid for all complex numbers z.
Taylor series
Taylor series expansion around 0 gives:
1
Γ
(
z
)
=
z
+
γ
z
2
+
(
γ
2
2
−
π
2
12
)
z
3
+
(
γ
3
6
−
γ
π
2
12
+
ζ
(
3
)
3
)
z
4
+
⋯
{\displaystyle {\frac {1}{\ \Gamma (z)\ }}=z+\gamma \ z^{2}+\left({\frac {\gamma ^{2}}{2}}-{\frac {\pi ^{2}}{12}}\right)\ z^{3}+\left({\frac {\gamma ^{3}}{6}}-{\frac {\gamma \pi ^{2}}{12}}+{\frac {\zeta (3)}{3}}\ \right)z^{4}+\cdots \ }
where γ is the Euler–Mascheroni constant. For n > 2, the coefficient an for the zn term can be computed recursively as
a
n
=
a
2
a
n
−
1
+
∑
j
=
2
n
−
1
(
−
1
)
j
+
1
ζ
(
j
)
a
n
−
j
n
−
1
=
γ
a
n
−
1
−
ζ
(
2
)
a
n
−
2
+
ζ
(
3
)
a
n
−
3
−
⋯
n
−
1
{\displaystyle a_{n}={\frac {\ {a_{2}\ a_{n-1}+\sum _{j=2}^{n-1}(-1)^{j+1}\ \zeta (j)\ a_{n-j}}\ }{n-1}}={\frac {\ \gamma \ a_{n-1}-\zeta (2)\ a_{n-2}+\zeta (3)\ a_{n-3}-\cdots \ }{n-1}}}
where ζ is the Riemann zeta function. An integral representation for these coefficients was recently found by Fekih-Ahmed (2014):
a
n
=
(
−
1
)
n
π
n
!
∫
0
∞
e
−
t
Im
[
(
log
(
t
)
−
i
π
)
n
]
d
t
.
{\displaystyle a_{n}={\frac {(-1)^{n}}{\pi n!}}\int _{0}^{\infty }e^{-t}\ \operatorname {Im} {\Bigl [}\ {\bigl (}\log(t)-i\pi {\bigr )}^{n}\ {\Bigr ]}\ \mathrm {d} t~.}
For small values, these give the following values:
Fekih-Ahmed (2014) also gives an approximation for
a
n
{\displaystyle a_{n}}
:
a
n
≈
(
−
1
)
n
(
n
−
1
)
!
2
π
n
Im
(
z
0
(
1
/
2
−
n
)
e
−
n
z
0
1
+
z
0
)
,
{\displaystyle a_{n}\approx {\frac {(-1)^{n}}{\ (n-1)!\ }}\ {\sqrt {{\frac {2}{\ \pi n\ }}\ }}\ \operatorname {Im} \left({\frac {\ z_{0}^{\left(1/2-n\right)}\ e^{-nz_{0}}\ }{\sqrt {1+z_{0}\ }}}\right)\ ,}
where
z
0
=
−
1
n
exp
(
W
−
1
(
−
n
)
)
,
{\displaystyle z_{0}=-{\frac {1}{n}}\exp \!{\Bigl (}W_{-1}(-n){\Bigr )}\ ,}
and
W
−
1
{\displaystyle W_{-1}}
is the minus-first branch of the Lambert W function.
The Taylor expansion around 1 has the same (but shifted) coefficients, i.e.:
1
Γ
(
1
+
z
)
=
1
z
Γ
(
z
)
=
1
+
γ
z
+
(
γ
2
2
−
π
2
12
)
z
2
+
(
γ
3
6
−
γ
π
2
12
+
ζ
(
3
)
3
)
z
3
+
⋯
{\displaystyle {\frac {1}{\Gamma (1+z)}}={\frac {1}{z\Gamma (z)}}=1+\gamma \ z+\left({\frac {\gamma ^{2}}{2}}-{\frac {\pi ^{2}}{12}}\right)\ z^{2}+\left({\frac {\gamma ^{3}}{6}}-{\frac {\gamma \pi ^{2}}{12}}+{\frac {\zeta (3)}{3}}\ \right)z^{3}+\cdots \ }
(the reciprocal of Gauss' pi-function).
Asymptotic expansion
As |z| goes to infinity at a constant arg(z) we have:
ln
(
1
/
Γ
(
z
)
)
∼
−
z
ln
(
z
)
+
z
+
1
2
ln
(
z
2
π
)
−
1
12
z
+
1
360
z
3
−
1
1260
z
5
for
|
arg
(
z
)
|
<
π
{\displaystyle \ln(1/\Gamma (z))\sim -z\ln(z)+z+{\tfrac {1}{2}}\ln \left({\frac {z}{2\pi }}\right)-{\frac {1}{12z}}+{\frac {1}{360z^{3}}}-{\frac {1}{1260z^{5}}}\qquad {\text{for}}~\left|\arg(z)\right|<\pi }
Contour integral representation
An integral representation due to Hermann Hankel is
1
Γ
(
z
)
=
i
2
π
∮
H
(
−
t
)
−
z
e
−
t
d
t
,
{\displaystyle {\frac {1}{\Gamma (z)}}={\frac {i}{2\pi }}\oint _{H}(-t)^{-z}e^{-t}\,dt,}
where H is the Hankel contour, that is, the path encircling 0 in the positive direction, beginning at and returning to positive infinity with respect for the branch cut along the positive real axis. According to Schmelzer & Trefethen, numerical evaluation of Hankel's integral is the basis of some of the best methods for computing the gamma function.
Integral representations at the positive integers
For positive integers
n
≥
1
{\displaystyle n\geq 1}
, there is an integral for the reciprocal factorial function given by
1
n
!
=
1
2
π
∫
−
π
π
e
−
n
i
t
e
e
i
t
d
t
.
{\displaystyle {\frac {1}{n!}}={\frac {1}{2\pi }}\int _{-\pi }^{\pi }e^{-nit}e^{e^{it}}\ dt.}
Similarly, for any real
c
>
0
{\displaystyle c>0}
and
z
∈
C
{\displaystyle z\in \mathbb {C} }
such that
R
e
(
z
)
>
0
{\displaystyle Re(z)>0}
we have the next integral for the reciprocal gamma function along the real axis in the form of:
1
Γ
(
z
)
=
1
2
π
∫
−
∞
∞
(
c
+
i
t
)
−
z
e
c
+
i
t
d
t
,
{\displaystyle {\frac {1}{\Gamma (z)}}={\frac {1}{2\pi }}\int _{-\infty }^{\infty }(c+it)^{-z}e^{c+it}dt,}
where the particular case when
z
=
n
+
1
/
2
{\displaystyle z=n+1/2}
provides a corresponding relation for the reciprocal double factorial function,
1
(
2
n
−
1
)
!
!
=
π
2
n
⋅
Γ
(
n
+
1
2
)
.
{\displaystyle {\frac {1}{(2n-1)!!}}={\frac {\sqrt {\pi }}{2^{n}\cdot \Gamma \left(n+{\frac {1}{2}}\right)}}.}
Integral along the real axis
Integration of the reciprocal gamma function along the positive real axis gives the value
∫
0
∞
1
Γ
(
x
)
d
x
≈
2.80777024
,
{\displaystyle \int _{0}^{\infty }{\frac {1}{\Gamma (x)}}\,dx\approx 2.80777024,}
which is known as the Fransén–Robinson constant.
We have the following formula ( chapter 9, exercise 100)
∫
0
∞
a
x
Γ
(
x
)
d
x
=
a
e
a
+
a
∫
0
∞
e
−
a
x
log
2
(
x
)
+
π
2
d
x
{\displaystyle \int _{0}^{\infty }{\dfrac {a^{x}}{\Gamma (x)}}\,dx=ae^{a}+a\int _{0}^{\infty }{\dfrac {e^{-ax}}{\log ^{2}(x)+\pi ^{2}}}\,dx}
See also
Bessel–Clifford function
Inverse-gamma distribution
References
Mette Lund, An integral for the reciprocal Gamma function
Milton Abramowitz & Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
Eric W. Weisstein, Gamma Function, MathWorld
Kata Kunci Pencarian:
- Daftar tetapan matematis
- Reciprocal gamma function
- Gamma function
- Entire function
- Inverse gamma function
- Particular values of the gamma function
- Inverse-gamma distribution
- Incomplete gamma function
- Riemann zeta function
- Beta function
- Bessel–Clifford function