- Source: Rectified 8-simplexes
In eight-dimensional geometry, a rectified 8-simplex is a convex uniform 8-polytope, being a rectification of the regular 8-simplex.
There are unique 3 degrees of rectifications in regular 8-polytopes. Vertices of the rectified 8-simplex are located at the edge-centers of the 8-simplex. Vertices of the birectified 8-simplex are located in the triangular face centers of the 8-simplex. Vertices of the trirectified 8-simplex are located in the tetrahedral cell centers of the 8-simplex.
Rectified 8-simplex
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S18. It is also called 06,1 for its branching Coxeter-Dynkin diagram, shown as .
= Coordinates
=The Cartesian coordinates of the vertices of the rectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,0,1,1). This construction is based on facets of the rectified 9-orthoplex.
= Images
=Birectified 8-simplex
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S28. It is also called 05,2 for its branching Coxeter-Dynkin diagram, shown as .
The birectified 8-simplex is the vertex figure of the 152 honeycomb.
= Coordinates
=The Cartesian coordinates of the vertices of the birectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,1,1). This construction is based on facets of the birectified 9-orthoplex.
= Images
=Trirectified 8-simplex
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S38. It is also called 04,3 for its branching Coxeter-Dynkin diagram, shown as .
= Coordinates
=The Cartesian coordinates of the vertices of the trirectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,1,1). This construction is based on facets of the trirectified 9-orthoplex.
= Images
=Related polytopes
This polytope is the vertex figure of the 9-demicube, and the edge figure of the uniform 261 honeycomb.
It is also one of 135 uniform 8-polytopes with A8 symmetry.
Notes
References
H.S.M. Coxeter:
H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
(Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Norman Johnson Uniform Polytopes, Manuscript (1991)
N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
Klitzing, Richard. "8D Uniform polytopes (polyzetta)". o3x3o3o3o3o3o3o - rene, o3o3x3o3o3o3o3o - brene, o3o3o3x3o3o3o3o - trene
External links
Polytopes of Various Dimensions
Multi-dimensional Glossary
Kata Kunci Pencarian:
- Rectified 8-simplexes
- Rectified 5-simplexes
- Rectified 7-simplexes
- Rectified 10-simplexes
- Rectified 9-simplexes
- Truncated 8-simplexes
- Heptellated 8-simplexes
- 4 21 polytope
- Rectified 6-simplexes
- 2 31 polytope