- Source: Reeb vector field
In mathematics, the Reeb vector field, named after the French mathematician Georges Reeb, is a notion that appears in various domains of contact geometry including:
in a contact manifold, given a contact 1-form
α
{\displaystyle \alpha }
, the Reeb vector field satisfies
R
∈
k
e
r
d
α
,
α
(
R
)
=
1
{\displaystyle R\in \mathrm {ker} \ d\alpha ,\ \alpha (R)=1}
,
in particular, in the context of Sasakian manifold.
Definition
Let
ξ
{\displaystyle \xi }
be a contact vector field on a manifold
M
{\displaystyle M}
of dimension
2
n
+
1
{\displaystyle 2n+1}
. Let
ξ
=
K
e
r
α
{\displaystyle \xi =Ker\;\alpha }
for a 1-form
α
{\displaystyle \alpha }
on
M
{\displaystyle M}
such that
α
∧
(
d
α
)
n
≠
0
{\displaystyle \alpha \wedge (d\alpha )^{n}\neq 0}
. Given a contact form
α
{\displaystyle \alpha }
, there exists a unique field (the Reeb vector field)
X
α
{\displaystyle X_{\alpha }}
on
M
{\displaystyle M}
such that:
i
(
X
α
)
d
α
=
0
{\displaystyle i(X_{\alpha })d\alpha =0}
i
(
X
α
)
α
=
1
{\displaystyle i(X_{\alpha })\alpha =1}
.
See also
Weinstein conjecture
References
Blair, David E. (2010). Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics. Vol. 203 (Second edition of 2002 original ed.). Boston, MA: Birkhäuser Boston, Ltd. doi:10.1007/978-0-8176-4959-3. ISBN 978-0-8176-4958-6. MR 2682326. Zbl 1246.53001.
McDuff, Dusa; Salamon, Dietmar (2017). Introduction to symplectic topology. Oxford Graduate Texts in Mathematics (Third edition of 1995 original ed.). Oxford: Oxford University Press. doi:10.1093/oso/9780198794899.001.0001. ISBN 978-0-19-879490-5. MR 3674984. Zbl 1380.53003.
Kata Kunci Pencarian:
- Reeb vector field
- Contact geometry
- Sasakian manifold
- Reeb
- Weinstein conjecture
- Georges Reeb
- Floer homology
- Lagrangian Grassmannian
- Trivial cylinder
- Clifford Taubes