• Source: Ruelle zeta function
  • In mathematics, the Ruelle zeta function is a zeta function associated with a dynamical system. It is named after mathematical physicist David Ruelle.


    Formal definition


    Let f be a function defined on a manifold M, such that the set of fixed points Fix(f n) is finite for all n > 1. Further let φ be a function on M with values in d × d complex matrices. The zeta function of the first kind is




    ζ
    (
    z
    )
    =
    exp


    (




    m

    1





    z

    m


    m





    x

    Fix

    (

    f

    m


    )


    Tr


    (




    k
    =
    0


    m

    1


    φ
    (

    f

    k


    (
    x
    )
    )

    )


    )



    {\displaystyle \zeta (z)=\exp \left(\sum _{m\geq 1}{\frac {z^{m}}{m}}\sum _{x\in \operatorname {Fix} (f^{m})}\operatorname {Tr} \left(\prod _{k=0}^{m-1}\varphi (f^{k}(x))\right)\right)}



    Examples


    In the special case d = 1, φ = 1, we have




    ζ
    (
    z
    )
    =
    exp


    (




    m

    1





    z

    m


    m



    |

    Fix

    (

    f

    m


    )

    |


    )



    {\displaystyle \zeta (z)=\exp \left(\sum _{m\geq 1}{\frac {z^{m}}{m}}\left|\operatorname {Fix} (f^{m})\right|\right)}


    which is the Artin–Mazur zeta function.
    The Ihara zeta function is an example of a Ruelle zeta function.


    See also


    List of zeta functions


    References



    Lapidus, Michel L.; van Frankenhuijsen, Machiel (2006). Fractal geometry, complex dimensions and zeta functions. Geometry and spectra of fractal strings. Springer Monographs in Mathematics. New York, NY: Springer-Verlag. ISBN 0-387-33285-5. Zbl 1119.28005.
    Kotani, Motoko; Sunada, Toshikazu (2000). "Zeta functions of finite graphs". J. Math. Sci. Univ. Tokyo. 7: 7–25.
    Terras, Audrey (2010). Zeta Functions of Graphs: A Stroll through the Garden. Cambridge Studies in Advanced Mathematics. Vol. 128. Cambridge University Press. ISBN 0-521-11367-9. Zbl 1206.05003.
    Ruelle, David (2002). "Dynamical Zeta Functions and Transfer Operators" (PDF). Bulletin of AMS. 8 (59): 887–895.

Kata Kunci Pencarian: