- Source: S-object
- Object Linking and Embedding
- Serpihan benda asing
- Pemrograman berorientasi objek
- UFO
- Pengenal objek digital
- Faint Object Spectrograph
- S/2004 S 4
- S/2004 S 3
- Document Object Model
- S/2004 S 17
- S-object
- Object
- Object-oriented programming
- Subject and object (philosophy)
- 2023 Alaska high-altitude object
- Immutable object
- Mathematical object
- Object (grammar)
- Object database
- Bearing (navigation)
Transporter 3 (2008)
Mechamato Movie (2022)
2001: A Space Odyssey (1968)
Azor (2021)
No More Posts Available.
No more pages to load.
In algebraic topology, an
S
{\displaystyle \mathbb {S} }
-object (also called a symmetric sequence) is a sequence
{
X
(
n
)
}
{\displaystyle \{X(n)\}}
of objects such that each
X
(
n
)
{\displaystyle X(n)}
comes with an action of the symmetric group
S
n
{\displaystyle \mathbb {S} _{n}}
.
The category of combinatorial species is equivalent to the category of finite
S
{\displaystyle \mathbb {S} }
-sets (roughly because the permutation category is equivalent to the category of finite sets and bijections.)
S-module
By
S
{\displaystyle \mathbb {S} }
-module, we mean an
S
{\displaystyle \mathbb {S} }
-object in the category
V
e
c
t
{\displaystyle {\mathsf {Vect}}}
of finite-dimensional vector spaces over a field k of characteristic zero (the symmetric groups act from the right by convention). Then each
S
{\displaystyle \mathbb {S} }
-module determines a Schur functor on
V
e
c
t
{\displaystyle {\mathsf {Vect}}}
.
This definition of
S
{\displaystyle \mathbb {S} }
-module shares its name with the considerably better-known model for highly structured ring spectra due to Elmendorf, Kriz, Mandell and May.
See also
Highly structured ring spectrum
Notes
References
Getzler, Ezra; Jones, J. D. S. (1994-03-08). "Operads, homotopy algebra and iterated integrals for double loop spaces". arXiv:hep-th/9403055.
Loday, Jean-Louis (1996). "La renaissance des opƩrades". www.numdam.org. SƩminaire Nicolas Bourbaki. MR 1423619. Zbl 0866.18007. Retrieved 2018-09-27.