• Source: Schiffler point
  • In geometry, the Schiffler point of a triangle is a triangle center, a point defined from the triangle that is equivariant under Euclidean transformations of the triangle. This point was first defined and investigated by Schiffler et al. (1985).


    Definition


    A triangle △ABC with the incenter I has its Schiffler point at the point of concurrence of the Euler lines of the four triangles △BCI, △CAI, △ABI, △ABC. Schiffler's theorem states that these four lines all meet at a single point.


    Coordinates


    Trilinear coordinates for the Schiffler point are






    1

    cos

    B
    +
    cos

    C



    :


    1

    cos

    C
    +
    cos

    A



    :


    1

    cos

    A
    +
    cos

    B





    {\displaystyle {\frac {1}{\cos B+\cos C}}:{\frac {1}{\cos C+\cos A}}:{\frac {1}{\cos A+\cos B}}}


    or, equivalently,







    b
    +
    c

    a


    b
    +
    c



    :



    c
    +
    a

    b


    c
    +
    a



    :



    a
    +
    b

    c


    a
    +
    b





    {\displaystyle {\frac {b+c-a}{b+c}}:{\frac {c+a-b}{c+a}}:{\frac {a+b-c}{a+b}}}


    where a, b, c denote the side lengths of triangle △ABC.


    References


    Emelyanov, Lev; Emelyanova, Tatiana (2003). "A note on the Schiffler point". Forum Geometricorum. 3: 113–116. MR 2004116.
    Hatzipolakis, Antreas P.; van Lamoen, Floor; Wolk, Barry; Yiu, Paul (2001). "Concurrency of four Euler lines". Forum Geometricorum. 1: 59–68. MR 1891516.
    Nguyen, Khoa Lu (2005). "On the complement of the Schiffler point". Forum Geometricorum. 5: 149–164. MR 2195745. Archived from the original on 2007-01-15. Retrieved 2007-01-17.
    Schiffler, Kurt (1985). "Problem 1018" (PDF). Crux Mathematicorum. 11: 51. Retrieved September 24, 2023.
    Veldkamp, G. R. & van der Spek, W. A. (1986). "Solution to Problem 1018" (PDF). Crux Mathematicorum. 12: 150–152. Retrieved September 24, 2023.
    Thas, Charles (2004). "On the Schiffler center". Forum Geometricorum. 4: 85–95. MR 2081772. Archived from the original on 2007-03-19. Retrieved 2007-01-17.


    External links


    Weisstein, Eric W. "Schiffler Point". MathWorld.

Kata Kunci Pencarian: