• Source: Schwinger parametrization
  • Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops.
    Using the well-known observation that






    1

    A

    n




    =


    1

    (
    n

    1
    )
    !






    0





    d
    u


    u

    n

    1



    e


    u
    A


    ,


    {\displaystyle {\frac {1}{A^{n}}}={\frac {1}{(n-1)!}}\int _{0}^{\infty }du\,u^{n-1}e^{-uA},}


    Julian Schwinger noticed that one may simplify the integral:








    d
    p


    A
    (
    p

    )

    n





    =


    1

    Γ
    (
    n
    )




    d
    p



    0





    d
    u


    u

    n

    1



    e


    u
    A
    (
    p
    )


    =


    1

    Γ
    (
    n
    )






    0





    d
    u


    u

    n

    1



    d
    p


    e


    u
    A
    (
    p
    )


    ,


    {\displaystyle \int {\frac {dp}{A(p)^{n}}}={\frac {1}{\Gamma (n)}}\int dp\int _{0}^{\infty }du\,u^{n-1}e^{-uA(p)}={\frac {1}{\Gamma (n)}}\int _{0}^{\infty }du\,u^{n-1}\int dp\,e^{-uA(p)},}


    for Re(n)>0.
    Another version of Schwinger parametrization is:






    i

    A
    +
    i
    ϵ



    =



    0





    d
    u


    e

    i
    u
    (
    A
    +
    i
    ϵ
    )


    ,


    {\displaystyle {\frac {i}{A+i\epsilon }}=\int _{0}^{\infty }du\,e^{iu(A+i\epsilon )},}


    which is convergent as long as



    ϵ
    >
    0


    {\displaystyle \epsilon >0}

    and



    A


    R



    {\displaystyle A\in \mathbb {R} }

    . It is easy to generalize this identity to n denominators.


    See also


    Feynman parametrization


    References

Kata Kunci Pencarian: