• Source: Solar eclipse of August 30, 1905
    • A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, August 30, 1905, with a magnitude of 1.0477. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days before perigee (on September 1, 1905, at 11:10 UTC), the Moon's apparent diameter was larger.
      Totality was visible from Canada, Newfoundland Colony (now belonging to Canada), Spain, French Algeria (now Algeria), French Tunisia (now Tunisia), Ottoman Tripolitania (now Libya) include the capital Tripoli, Egypt, Ottoman Empire (the parts now belonging to Saudi Arabia) including Mecca, Emirate of Jabal Shammar (now belonging to Saudi Arabia), Aden Protectorate (now belonging to Yemen), and Muscat and Oman (now Oman). A partial eclipse was visible for parts of Eastern North America, Europe, Northern Africa, Central Africa, and West Asia.
      This eclipse was observed from Alcalà de Xivert in Spain. It was also observed by members of the British Astronomical Association from various locations.


      Observations


      Teams of the United States Naval Observatory observed the eclipse from three different locations. Two were near the centerline of the path of totality: Daroca, Spain at an altitude of 2,500 feet (760 m) and Guelma, French Algeria at an altitude of 1,500 feet (460 m). The third was near the southern edge of the path of totality, at Porta Coeli Charterhouse, Valencia, Spain at an altitude of 1,000 feet (300 m). The leader and some team members departed from New York City by ship on July 3 and arrived at Grado, Asturias, a Spanish port on the northern coast on July 20, while other team members had already arrived there in advance. In the end, the weather was clear in all three locations, and the observations were successful. The team took images of the corona and observed the spectrum.


      Eclipse details


      Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.


      Eclipse season



      This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.


      Related eclipses




      = Eclipses in 1905

      =
      A partial lunar eclipse on February 19.
      An annular solar eclipse on March 6.
      A partial lunar eclipse on August 15.
      A total solar eclipse on August 30.


      = Metonic

      =
      Preceded by: Solar eclipse of November 11, 1901
      Followed by: Solar eclipse of June 17, 1909


      = Tzolkinex

      =
      Preceded by: Solar eclipse of July 18, 1898
      Followed by: Solar eclipse of October 10, 1912


      = Half-Saros

      =
      Preceded by: Lunar eclipse of August 23, 1896
      Followed by: Lunar eclipse of September 4, 1914


      = Tritos

      =
      Preceded by: Solar eclipse of September 29, 1894
      Followed by: Solar eclipse of July 30, 1916


      = Solar Saros 143

      =
      Preceded by: Solar eclipse of August 19, 1887
      Followed by: Solar eclipse of September 10, 1923


      = Inex

      =
      Preceded by: Solar eclipse of September 17, 1876
      Followed by: Solar eclipse of August 10, 1934


      = Triad

      =
      Preceded by: Solar eclipse of October 29, 1818
      Followed by: Solar eclipse of June 30, 1992


      = Solar eclipses of 1902–1906

      =
      This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.
      The partial solar eclipses on May 7, 1902 and October 31, 1902 occur in the previous lunar year eclipse set, and the partial solar eclipse on July 21, 1906 occurs in the next lunar year eclipse set.


      = Saros 143

      =
      This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
      The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit.


      = Metonic series

      =
      The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.


      = Tritos series

      =
      This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
      The partial solar eclipses on November 16, 2134 (part of Saros 164) and October 16, 2145 (part of Saros 165) are also a part of this series but are not included in the table below.


      = Inex series

      =
      This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.


      Notes




      References


      Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
      Google interactive map
      Besselian elements
      The total solar eclipse 1905: Reports of observations made by members of the ... By British Astronomical Association, Frederick William Levander
      Report of the solar eclipse expedition to Palma, Majorca, August 30, 1905 ... By Solar Physics Committee, Norman Lockyer
      Sketchs of Solar Corona August 30, 1905
      Sketchs from Russia expedition for solar Corona August 30, 1905 (2) Archived August 8, 2009, at the Wayback Machine

    Kata Kunci Pencarian: