- Source: Solar eclipse of November 22, 1919
An annular solar eclipse occurred at the Moon's ascending node of orbit on Saturday, November 22, 1919, with a magnitude of 0.9198. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 11 hours before apogee (on November 23, 1919, at 2:20 UTC), the Moon's apparent diameter was smaller.
The duration of annularity at maximum eclipse (closest to but slightly shorter than the longest duration) was 11 minutes, 36.56 seconds in the Atlantic Ocean north of Brazil. It was the longest annular solar eclipse since January 5, 1647, but the Solar eclipse of December 2, 1937 lasted longer.
Places inside the annular eclipse included North America and the Caribbean, including Austin, San Antonio, Houston and Galveston, Texas in the United States and was close to Mexico at around 7:30 CT (13:30 UTC), more than a quarter of the Gulf of Mexico and close to the Florida Keys in the United States which occurred before 8:45 ET (13:45 UTC), it also included Cuba, most of Haiti and the southwesternmost Dominican Republic, it was almost near Venezuela and it included Saint Vincent and the Grenadines and Barbados which happened in the mid morning hours. The greatest eclipse occurred at 15:14:12 UTC. In Africa, it included the Gambia, southern Senegal including Casamance, Portuguese Guinea (now Guinea-Bissau), the northern part of French Guinea (now Guinea) which occurred before 15:45 (16:45 UTC) and southeasternmost Mauritania and the middle portion of the French Sudan (now Mali) which included Bamako and Timbuktu, it occurred in the late afternoon before sunset at 17:00 UTC. A partial eclipse was visible for parts of North America, the Caribbean, northern South America, West Africa, and Western Europe.
Eclipse details
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipses
= Eclipses in 1919
=A penumbral lunar eclipse on May 15.
A total solar eclipse on May 29.
A partial lunar eclipse on November 7.
An annular solar eclipse on November 22.
= Metonic
=Preceded by: Solar eclipse of February 3, 1916
Followed by: Solar eclipse of September 10, 1923
= Tzolkinex
=Preceded by: Solar eclipse of October 10, 1912
Followed by: Solar eclipse of January 3, 1927
= Half-Saros
=Preceded by: Lunar eclipse of November 17, 1910
Followed by: Lunar eclipse of November 27, 1928
= Tritos
=Preceded by: Solar eclipse of December 23, 1908
Followed by: Solar eclipse of October 21, 1930
= Solar Saros 141
=Preceded by: Solar eclipse of November 11, 1901
Followed by: Solar eclipse of December 2, 1937
= Inex
=Preceded by: Solar eclipse of December 12, 1890
Followed by: Solar eclipse of November 1, 1948
= Triad
=Preceded by: Solar eclipse of January 20, 1833
Followed by: Solar eclipse of September 22, 2006
= Solar eclipses of 1916–1920
=This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.
The solar eclipses on February 3, 1916 (total), July 30, 1916 (annular), January 23, 1917 (partial), and July 19, 1917 (partial) occur in the previous lunar year eclipse set.
= Saros 141
=This eclipse is a part of Saros series 141, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on May 19, 1613. It contains annular eclipses from August 4, 1739 through October 14, 2640. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on June 13, 2857. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 20 at 12 minutes, 9 seconds on December 14, 1955. All eclipses in this series occur at the Moon’s ascending node of orbit.
= Metonic series
=The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
= Tritos series
=This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
The partial solar eclipses on December 7, 2170 (part of Saros 164) and November 7, 2181 (part of Saros 165) are also a part of this series but are not included in the table below.
= Inex series
=This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Notes
References
Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
Google interactive map
Besselian elements
Kata Kunci Pencarian:
- Gerhana matahari
- Daftar julukan kota di Amerika Serikat
- Daftar pengambilan alih oleh Google
- Solar eclipse of November 22, 1919
- 1919 solar eclipse
- Solar eclipse of May 29, 1919
- Solar eclipse of November 22, 1984
- Solar eclipse of July 22, 2009
- Solar eclipse of November 22, 1900
- List of solar eclipses in the 20th century
- Solar eclipse of July 22, 2028
- Solar eclipse of November 21, 1938
- Solar eclipse of September 22, 2006