- Source: Sphere theorem (3-manifolds)
In mathematics, in the topology of 3-manifolds, the sphere theorem of Christos Papakyriakopoulos (1957) gives conditions for elements of the second homotopy group of a 3-manifold to be represented by embedded spheres.
One example is the following:
Let
M
{\displaystyle M}
be an orientable 3-manifold such that
π
2
(
M
)
{\displaystyle \pi _{2}(M)}
is not the trivial group. Then there exists a non-zero element of
π
2
(
M
)
{\displaystyle \pi _{2}(M)}
having a representative that is an embedding
S
2
→
M
{\displaystyle S^{2}\to M}
.
The proof of this version of the theorem can be based on transversality methods, see Jean-Loïc Batude (1971).
Another more general version (also called the projective plane theorem, and due to David B. A. Epstein) is:
Let
M
{\displaystyle M}
be any 3-manifold and
N
{\displaystyle N}
a
π
1
(
M
)
{\displaystyle \pi _{1}(M)}
-invariant subgroup of
π
2
(
M
)
{\displaystyle \pi _{2}(M)}
. If
f
:
S
2
→
M
{\displaystyle f\colon S^{2}\to M}
is a general position map such that
[
f
]
∉
N
{\displaystyle [f]\notin N}
and
U
{\displaystyle U}
is any neighborhood of the singular set
Σ
(
f
)
{\displaystyle \Sigma (f)}
, then there is a map
g
:
S
2
→
M
{\displaystyle g\colon S^{2}\to M}
satisfying
[
g
]
∉
N
{\displaystyle [g]\notin N}
,
g
(
S
2
)
⊂
f
(
S
2
)
∪
U
{\displaystyle g(S^{2})\subset f(S^{2})\cup U}
,
g
:
S
2
→
g
(
S
2
)
{\displaystyle g\colon S^{2}\to g(S^{2})}
is a covering map, and
g
(
S
2
)
{\displaystyle g(S^{2})}
is a 2-sided submanifold (2-sphere or projective plane) of
M
{\displaystyle M}
.
quoted in (Hempel 1976, p. 54).
References
Batude, Jean-Loïc (1971). "Singularité générique des applications différentiables de la 2-sphère dans une 3-variété différentiable" (PDF). Annales de l'Institut Fourier. 21 (3): 151–172. doi:10.5802/aif.383. MR 0331407.
Epstein, David B. A. (1961). "Projective planes in 3-manifolds". Proceedings of the London Mathematical Society. 3rd ser. 11 (1): 469–484. doi:10.1112/plms/s3-11.1.469.
Hempel, John (1976). 3-manifolds. Annals of Mathematics Studies. Vol. 86. Princeton, NJ: Princeton University Press. MR 0415619.
Papakyriakopoulos, Christos (1957). "On Dehn's lemma and asphericity of knots". Annals of Mathematics. 66 (1): 1–26. doi:10.2307/1970113. JSTOR 1970113. PMC 528404.
Whitehead, J. H. C. (1958). "On 2-spheres in 3-manifolds". Bulletin of the American Mathematical Society. 64 (4): 161–166. doi:10.1090/S0002-9904-1958-10193-7.
Kata Kunci Pencarian:
- Daftar masalah matematika yang belum terpecahkan
- Sphere theorem (3-manifolds)
- 3-manifold
- Lickorish–Wallace theorem
- Loop theorem
- Spherical 3-manifold
- Whitehead manifold
- Hyperbolic 3-manifold
- Rokhlin's theorem
- Poincaré conjecture
- Sphere theorem
School of Youth: The Corruption of Morals (2014)
No More Posts Available.
No more pages to load.