- Source: Stable marriage with indifference
Stable marriage with indifference is a variant of the stable marriage problem. Like in the original problem, the goal is to match all men to all women such that no pair of man and woman who are unmarried to each other, would simultaneously like to leave their present partners and pair with each other instead.
In the classic version of the problem, each person must rank the members of the opposite sex in strict order of preference. However, in a real-world setting, a person may prefer two or more persons as equally favorable partner. Such tied preference is termed as indifference.
Below is such an instance where
m
2
{\displaystyle m_{2}}
is indifferent between
w
3
&
w
1
{\displaystyle w_{3}\&w_{1}}
and
w
2
{\displaystyle w_{2}}
is indifferent between
m
1
&
m
2
{\displaystyle m_{1}\&m_{2}}
.
m
1
[
w
2
w
1
w
3
]
w
1
[
m
3
m
2
m
1
]
{\displaystyle m_{1}[\ w_{2}\ w_{1}\ w_{3}\ ]\ \ \ \ \ \ w_{1}[\ m_{3}\ m_{2}\ m_{1}\ ]}
m
2
[
(
w
3
w
1
)
w
2
]
w
2
[
(
m
1
m
2
)
m
3
]
{\displaystyle m_{2}[\left(w_{3}\ w_{1}\right)w_{2}]\ \ \ \ \ \ w_{2}[\left(m_{1}\ m_{2}\right)m_{3}]}
m
3
[
w
1
w
2
w
3
]
w
3
[
m
2
m
3
m
1
]
{\displaystyle m_{3}[\ w_{1}\ w_{2}\ w_{3}\ ]\ \ \ \ \ \ w_{3}[\ m_{2}\ m_{3}\ m_{1}\ ]}
If tied preference lists are allowed then the stable marriage problem will have three notions of stability which are discussed in the below sections.
1. A matching is called weakly stable unless there is a couple each of whom strictly prefers the other to his/her partner in the matching. Robert W. Irving extended the Gale–Shapley algorithm as shown below to provide such a weakly stable matching in
O
(
n
2
)
{\displaystyle O(n^{2})}
time, where n is the size of the stable marriage problem. Ties in the men and women's preference lists are broken arbitrarily. Preference lists are reduced as the algorithm proceeds.
2. A matching is called super-stable if there is no couple each of whom either strictly prefers the other to his/her partner or is indifferent between them. Robert W. Irving has modified the above algorithm to check whether such super stable matching exists and outputs matching in
O
(
n
2
)
{\displaystyle O(n^{2})}
time if it exists. Below is the pseudocode.
3. A matching is strongly stable if there is no couple x, y such that x strictly prefers y to his/her partner and y either strictly prefers x to his/her partner or is indifferent between them. Robert W. Irving has provided the algorithm which checks if such strongly stable matching exists and outputs the matching if it exists. The algorithm computes perfect matching between sets of men and women, thus finding the critical set of men who are engaged to multiple women. Since such engagements are never stable, all such pairs are deleted and the proposal sequence will be repeated again until either 1) some man's preference list becomes empty (in which case no strongly stable matching exists) or 2) strongly stable matching is obtained. Below is the pseudo-code for finding strongly stable matching. It runs in
O
(
n
4
)
{\displaystyle O(n^{4})}
time which is explained in the Lemma 4.6 of .
Structure of stable marriage with indifference
In many problems, there can be several different stable matchings. The set of stable matchings has a special structure. David F. Manlove proved that both the set of strong stable matchings and the set of super stable matchings form a distributive lattice.
References
Kata Kunci Pencarian:
- Daftar film bertema lesbian, gay, biseksual dan transgender
- Stable marriage with indifference
- Stable marriage problem
- Same-sex marriage
- SMTI
- Same-sex marriage in Massachusetts
- Herbivore men
- Puppy love
- Anne of Denmark
- LGBTQ rights in the Philippines
- Irreligion in the United States