• Source: Suslin tree
    • In mathematics, a Suslin tree is a tree of height ω1 such that
      every branch and every antichain is countable. They are named after Mikhail Yakovlevich Suslin.
      Every Suslin tree is an Aronszajn tree.
      The existence of a Suslin tree is independent of ZFC, and is equivalent to the existence of a Suslin line (shown by Kurepa (1935)) or a Suslin algebra. The diamond principle, a consequence of V=L, implies that there is a Suslin tree, and Martin's axiom MA(ℵ1) implies that there are no Suslin trees.
      More generally, for any infinite cardinal κ, a κ-Suslin tree is a tree of height κ such that every branch and antichain has cardinality less than κ. In particular a Suslin tree is the same as a ω1-Suslin tree. Jensen (1972) showed that if V=L then there is a κ-Suslin tree for every infinite successor cardinal κ. Whether the Generalized Continuum Hypothesis implies the existence of an ℵ2-Suslin tree, is a longstanding open problem.


      See also


      Glossary of set theory
      Kurepa tree
      List of statements independent of ZFC
      List of unsolved problems in set theory
      Suslin's problem


      References

    Kata Kunci Pencarian: