- Source: Sustainable food system
A sustainable food system is a type of food system that provides healthy food to people and creates sustainable environmental, economic, and social systems that surround food. Sustainable food systems start with the development of sustainable agricultural practices, development of more sustainable food distribution systems, creation of sustainable diets, and reduction of food waste throughout the system. Sustainable food systems have been argued to be central to many or all 17 Sustainable Development Goals.
Moving to sustainable food systems, including via shifting consumption to sustainable diets, is an important component of addressing the causes of climate change and adapting to it. A 2020 review conducted for the European Union found that up to 37% of global greenhouse gas emissions could be attributed to the food system, including crop and livestock production, transportation, changing land use (including deforestation), and food loss and waste. Reduction of meat production, which accounts for ~60% of greenhouse gas emissions and ~75% of agriculturally used land, is one major component of this change.
The global food system is facing major interconnected challenges, including mitigating food insecurity, effects from climate change, biodiversity loss, malnutrition, inequity, soil degradation, pest outbreaks, water and energy scarcity, economic and political crises, natural resource depletion, and preventable ill-health.
The concept of sustainable food systems is frequently at the center of sustainability-focused policy programs, such as proposed Green New Deal programs.
Definition
There are many different definitions of a sustainable food system.
From a global perspective, the Food and Agriculture Organization of the United Nations describes a sustainable food system as follows:
A sustainable food system (SFS) is a food system that delivers food security and nutrition for all in such a way that the economic, social and environmental bases to generate food security and nutrition for future generations are not compromised. This means that:
It is profitable throughout (economic sustainability);
It has broad-based benefits for society (social sustainability); and
It has a positive or neutral impact on the natural environment (environmental sustainability)
The American Public Health Association (APHA) defines a sustainable food system as:
one that provides healthy food to meet current food needs while maintaining healthy ecosystems that can also provide food for generations to come with minimal negative impact to the environment. A sustainable food system also encourages local production and distribution infrastructures and makes nutritious food available, accessible, and affordable to all. Further, it is humane and just, protecting farmers and other workers, consumers, and communities
The European Union's Scientific Advice Mechanism defines a sustainable food system as a system that:
provides and promotes safe, nutritious and healthy food of low environmental impact for all current and future EU citizens in a manner that itself also protects and restores the natural environment and its ecosystem services, is robust and resilient, economically dynamic, just and fair, and socially acceptable and inclusive. It does so without compromising the availability of nutritious and healthy food for people living outside the EU, nor impairing their natural environment
Problems with conventional food systems
Industrial agriculture causes environmental impacts, as well as health problems associated with both obesity and hunger. This has generated a strong interest in healthy, sustainable eating as a major component of the overall movement toward sustainability and climate change mitigation.
Conventional food systems are largely based on the availability of inexpensive fossil fuels, which is necessary for mechanized agriculture, the manufacturing or collection of chemical fertilizers, the processing of food products, and the packaging of foods. Food processing began when the number of consumers started growing rapidly. The demand for cheap and efficient calories climbed, which resulted in nutrition decline. Industrialized agriculture, due to its reliance on economies of scale to reduce production costs, often leads to the compromising of local, regional, or even global ecosystems through fertilizer runoff, nonpoint source pollution, deforestation, suboptimal mechanisms affecting consumer product choice, and greenhouse gas emissions.
= Food and power
=In the contemporary world, transnational corporations execute high levels of control over the food system. In this system, both farmers and consumers are disadvantaged and have little control; power is concentrated in the center of the supply chain, where corporations control how food moves from producers to consumers.
Disempowerment of consumers
People living in different areas face substantial inequality in their access to healthy food. Areas where affordable, healthy food, particularly fresh fruits and vegetables, is difficult to access are sometimes called food deserts. This term has been particularly applied in the USA. In addition, conventional channels do not distribute food by emergency assistance or charity. Urban residents receive more sustainable food production from healthier and safer sources than low-income communities. Nonetheless, conventional channels are more sustainable than charitable or welfare food resources. Even though the conventional food system provides easier access and lower prices, their food may not be the best for the environment nor consumer health.
Both obesity and undernutrition are associated with poverty and marginalization. This has been referred to as the "double burden of malnutrition." In low-income areas, there may be abundant access to fast-food or small convenience stores and "corner" stores, but no supermarkets that sell a variety of healthy foods.
Disempowerment of producers
Small farms tend to be more sustainable than large farming operations, because of differences in their management and methods. Industrial agriculture replaces human labor using increased usage of fossil fuels, fertilizers, pesticides, and machinery and is heavily reliant on monoculture. However, if current trends continue, the number of operating farms in existence is expected to halve by 2100, as smallholders' farms are consolidated into larger operations. The percentage of people who work as farmers worldwide dropped from 44% to 26% between 1991 and 2020.
Small farmers worldwide are often trapped in poverty and have little agency in the global food system. Smallholder farms produce a greater diversity of crops as well as harboring more non-crop biodiversity, but in wealthy, industrialized countries, small farms have declined severely. For example, in the USA, 4% of the total number of farms operate 26% of all agricultural land.
= Complications from globalization
=The need to reduce production costs in an increasingly global market can cause production of foods to be moved to areas where economic costs (labor, taxes, etc.) are lower or environmental regulations are more lax, which are usually further from consumer markets. For example, the majority of salmon sold in the United States is raised off the coast of Chile, due in large part to less stringent Chilean standards regarding fish feed and regardless of the fact that salmon are not indigenous in Chilean coastal waters. The globalization of food production can result in the loss of traditional food systems in less developed countries and have negative impacts on the population health, ecosystems, and cultures in those countries.
Globalization of sustainable food systems has coincided the proliferation of private standards in the agri-food sector where big food retailers have formed multi-stakeholder initiatives (MSIs) with governance over standard setting organizations (SSOs) who maintain the standards. One such MSI is the Consumer Goods Forum(CGF). With CGF members openly using lobbying dollars to influence trade agreements for food systems which leads to creating barriers to competition. Concerns around corporate governance within food systems as a substitute for regulation were raised by the Institute for Multi-Stakeholder Initiative Integrity. The proliferation of private standards resulted in standard harmonization from organizations that include the Global Food Safety Initiative and ISEAL Alliance. The unintended consequence of standard harmonization was a perverse incentive because companies owning private standards generate revenue from fees that other companies have to pay to implement the standards. This has led to more and more private standards entering the marketplace who are enticed to make money.
= Systemic structures
=Moreover, the existing conventional food system lacks the inherent framework necessary to foster sustainable models of food production and consumption. Within the decision-making processes associated with this system, the burden of responsibility primarily falls on consumers and private enterprises. This expectation places the onus on individuals to voluntarily and often without external incentives, expend effort to educate themselves about sustainable behaviours and specific product choices. This educational endeavour is reliant on the availability of public information. Subsequently, consumers are urged to alter their decision-making patterns concerning production and consumption, driven by prioritised ethical values and sometimes health benefits, even when significant drawbacks are prevalent. These drawbacks faced by consumers include elevated costs of organic foods, imbalanced monetary price differentials between animal-intensive diets and plant-based alternatives, and an absence of comprehensive consumer guidance aligned with contemporary valuations. In 2020, an analysis of external climate costs of foods indicated that external greenhouse gas costs are typically highest for animal-based products – conventional and organic to about the same extent within that ecosystem subdomain – followed by conventional dairy products and lowest for organic plant-based foods. It finds contemporary monetary evaluations to be "inadequate" and policy-making that lead to reductions of these costs to be possible, appropriate and urgent.
= Agricultural pollution
=Sourcing sustainable food
At the global level the environmental impact of agribusiness is being addressed through sustainable agriculture, cellular agriculture and organic farming.
Various alternatives to meat and novel classes of foods can substantially increase sustainability. There are large potential benefits of marine algae-based aquaculture for the development of a future healthy and sustainable food system. Fungiculture, another sector of a growing bioeconomy besides algaculture, may also become a larger component of a sustainable food system. Consumption shares of various other ingredients for meat analogues such as protein from pulses may also rise substantially in a sustainable food system. The integration of single-cell protein, which can be produced from captured CO2. Optimized dietary scenarios would also see changes in various other types of foods such as nuts, as well as pulses such as beans, which have favorable environmental and health profiles.
Complementary approaches under development include vertical farming of various types of foods and various agricultural technologies, often using digital agriculture.
= Sustainable seafood
=Sustainable seafood is seafood from either fished or farmed sources that can maintain or increase production in the future without jeopardizing the ecosystems from which it was acquired. The sustainable seafood movement has gained momentum as more people become aware about both overfishing and environmentally destructive fishing methods. The goal of sustainable seafood practices is to ensure that fish populations are able to continue to thrive, that marine habitats are protected, and that fishing and aquaculture practices do not have negative impacts on local communities or economies.
There are several factors that go into determining whether a seafood product is sustainable or not. These include the method of fishing or farming, the health of the fish population, the impact on the surrounding environment, and the social and economic implications of the seafood production. Some sustainable seafood practices include using methods that minimize bycatch, implementing seasonal or area closures to allow fish populations to recover, and using aquaculture methods that minimize the use of antibiotics or other chemicals. Organizations such as the Marine Stewardship Council (MSC) and the Aquaculture Stewardship Council (ASC) work to promote sustainable seafood practices and provide certification for products that meet their sustainability standards. In addition, many retailers and restaurants are now offering sustainable seafood options to their customers, often labeled with a sustainability certification logo to make it easier for consumers to make informed choices. Consumers can also play a role in promoting sustainable seafood by making conscious choices about the seafood they purchase and consume. This can include choosing seafood that is labeled as sustainably harvested or farmed, asking questions about the source and production methods of the seafood they purchase, and supporting restaurants and retailers that prioritize sustainability in their seafood offerings. By working together to promote sustainable seafood practices, we can help to ensure the health and sustainability of our oceans and the communities that depend on them.
= Sustainable animal feed
=A study suggests there would be large environmental benefits of using insects for animal feed.When substituting mixed grain, which is currently the main animal feed, insect feed lowers water and land requirement and emits fewer greenhouse gas and ammonia.
Sustainable pet food
Recent studies show that vegan diets, which are more sustainable, would not have negative impact on the health of pet dogs and cats if implemented appropriately. It aims to minimize the ecological footprint of pet food production while still providing the necessary nutrition for pets. Recent studies have explored the potential benefits of vegan diets for pets in terms of sustainability.
One example is the growing body of research indicating that properly formulated and balanced vegan diets can meet the nutritional needs of dogs and cats without compromising their health. These studies suggest that with appropriate planning and supplementation, pets can thrive on plant-based diets. This is significant from a sustainability perspective as traditional pet food production heavily relies on animal-based ingredients, which contribute to deforestation, greenhouse gas emissions, and overfishing.
By opting for sustainable pet food options, such as plant-based or eco-friendly alternatives, pet owners can reduce their pets' carbon footprint and support more ethical and sustainable practices in the pet food industry. Additionally, sustainable pet food may also prioritize the use of responsibly sourced ingredients, organic farming practices, and minimal packaging waste. It is important to note that when considering a vegan or alternative diet for pets, consultation with a veterinarian is crucial. Each pet has unique nutritional requirements, and a professional can help determine the most suitable diet plan to ensure all necessary nutrients are provided.
= Substitution of meat and sustainable meat and dairy
=Meat reduction strategies
Effects and combination of measures
"Policy sequencing" to gradually extend regulations once established to other forest risk commodities (e.g. other than beef) and regions while coordinating with other importing countries could prevent ineffectiveness.
Meat and dairy
Despite meat from livestock such as beef and lamb being considered unsustainable, some regenerative agriculture proponents suggest rearing livestock with a mixed farming system to restore organic matter in grasslands. Organizations such as the Canadian Roundtable for Sustainable Beef (CRSB) are looking for solutions to reduce the impact of meat production on the environment. In October 2021, 17% of beef sold in Canada was certified as sustainable beef by the CRSB. However, sustainable meat has led to criticism, as environmentalists point out that the meat industry excludes most of its emissions.
Important mitigation options for reducing the greenhouse gas emissions from livestock include genetic selection, introduction of methanotrophic bacteria into the rumen, vaccines, feeds, toilet-training, diet modification and grazing management. Other options include shifting to ruminant-free alternatives, such as milk substitutes and meat analogues or poultry, which generates far fewer emissions.
Plant-based meat is proposed for sustainable alternatives to meat consumption. Plant-based meat emits 30%–90% less greenhouse gas than conventional meat (kg-CO2-eq/kg-meat) and 72%–99% less water than conventional meat. Public company Beyond Meat and privately held company Impossible Foods are examples of plant-based food production. However, consulting firm Sustainalytics assured that these companies are not more sustainable than meat-processors competitors such as food processor JBS, and they don't disclose all the CO2 emissions of their supply chain.
Beyond reducing negative impacts of meat production, facilitating shifts towards more sustainable meat, and facilitating reduced meat consumption (including via plant-based meat substitutes), cultured meat may offer a potentially sustainable way to produce real meat without the associated negative environmental impacts.
= Phase-outs, co-optimization and environmental standards
=In regards to deforestation, a study proposed kinds of "climate clubs" of "as many other states as possible taking similar measures and establishing uniform environmental standards". It suggested that "otherwise, global problems remain unsolvable, and shifting effects will occur" and that "border adjustments [...] have to be introduced to target those states that do not participate—again, to avoid shifting effects with ecologically and economically detrimental consequences", with such "border adjustments or eco-tariffs" incentivizing other countries to adjust their standards and domestic production to join the climate club. Identified potential barriers to sustainability initiatives may include contemporary trade-policy goals and competition law. Greenhouse gas emissions for countries are often measured according to production, for imported goods that are produced in other countries than where they are consumed "embedded emissions" refers to the emissions of the product. In cases where such products are and remain imported, eco-tariffs could over time adjust prices for specific categories of products – or for specific non-collaborative polluting origin countries – such as deforestation-associated meat, foods with intransparent supply-chain origin or foods with high embedded emissions.
= Agricultural productivity and environmental efficiency
=Agricultural productivity (including e.g. reliability of yields) is an important component of food security and increasing it sustainably (e.g. with high efficiency in terms of environmental impacts) could be a major way to decrease negative environmental impacts, such as by decreasing the amount of land needed for farming or reducing environmental degradation like deforestation.
Genetically engineered crops
There is research and development to engineer genetically modified crops with increased heat/drought/stress resistance, increased yields, lower water requirements, and overall lower environmental impacts, among other things.
Novel agricultural technologies
= Organic food
== Local food systems
=In local and regional food systems, food is produced, distributed, and consumed locally. This type of system can be beneficial both to the consumer (by providing fresher and more sustainably grown product) and to the farmer (by fetching higher prices and giving more direct access to consumer feedback). Local and regional food systems can face challenges arising from inadequate institutions or programs, geographic limitations of producing certain crops, and seasonal fluctuations which can affect product demand within regions. In addition, direct marketing also faces challenges of accessibility, coordination, and awareness.
Farmers' markets, which have increased in number over the past two decades, are designed for supporting local farmers in selling their fresh products to consumers who are willing to buy. Food hubs are also similar locations where farmers deliver products and consumers come to pick them up. Consumers who wish to have weekly produce delivered can buy shares through a system called Community-Supported Agriculture (CSA). However, these farmers' markets also face challenges with marketing needs such as starting up, advertisement, payments, processing, and regulations.
There are various movements working towards local food production, more productive use of urban wastelands and domestic gardens including permaculture, guerilla gardening, urban horticulture, local food, slow food, sustainable gardening, and organic gardening.
Debates over local food system efficiency and sustainability have risen as these systems decrease transportation, which is a strategy for combating environmental footprints and climate change. A popular argument is that the less impactful footprint of food products from local markets on communities and environment. Main factors behind climate change include land use practices and greenhouse emissions, as global food systems produce approximately 33% of theses emissions. Compared to transportation in a local food system, a conventional system takes more fuel for energy and emits more pollution, such as carbon dioxide. This transportation also includes miles for agricultural products to help with agriculture and depends on factors such as transportation sizes, modes, and fuel types. Some airplane importations have shown to be more efficient than local food systems in some cases. Overall, local food systems can often support better environmental practices.
Environmental impact of food miles
Studies found that food miles are a relatively minor factor of carbon emissions; albeit increased food localization may also enable additional, more significant environmental benefits such as recycling of energy, water, and nutrients. For specific foods, regional differences in harvest seasons may make it more environmentally friendly to import from distant regions than more local production and storage or local production in greenhouses. This may vary depending on the environmental standards in the respective country, the distance of the respective countries and on a case-by-case basis for different foods.
However, a 2022 study suggests global food miles' CO2 emissions are 3.5–7.5 times higher than previously estimated, with transport accounting for about 19% of total food-system emissions, though shifting towards plant-based diets remains substantially more important. The study concludes that "a shift towards plant-based foods must be coupled with more locally produced items, mainly in affluent countries".
Food distribution
In food distribution, increasing food supply is a production problem, as it takes time for products to get marketed, and as they wait to get distributed the food goes to waste. Despite the fact that throughout all food production an estimated 20-30% of food is wasted, there have been efforts to combat this issue, such as campaigns conducted to promote limiting food waste. However, due to insufficient facilities and practices as well as huge amounts of food going unmarketed or harvested due to prices or quality, food is wasted through each phase of its distribution. Another factor for lack of sustainability within food distribution includes transportation in combination with inadequate methods for food handling throughout the packing process. Additionally, poor or long conditions for food in storage and consumer waste add to this list of factors for inefficiency found in food distribution. In 2019, though global production of calories kept pace with population growth, there are still more than 820 million people who have insufficient food and many more consume low-quality diets leading to micronutrient deficiencies.
Some modern tendencies in food distribution also create bounds in which problems are created and solutions must be formed. One factor includes growth of large-scale producing and selling units in bulk to chain stores which displays merchandising power from large scale market organizations as well as their mergence with manufactures. In response to production, another factor includes large scale distribution and buying units among manufacturers in development of food distribution, which also affects producers, distributors, and consumers. Another main factor involves protecting public interest, which means better adaptation for product and service, resulting in rapid development of food distribution. A further factor revolves around price maintenance, which creates pressure for lower prices, resulting in higher drive for lower cost throughout the whole food distribution process. An additional factor comprises new changes and forms of newly invented technical processes such as developments of freezing food, discovered through experiments, to help with distribution efficiency. Another factor is new technical developments in distributing machinery to meet the influence of consumer demands and economic factors. Lastly, one more factor includes government relation to businesses and those who petition against it in correlation with anti-trust laws due to large scale business organizations and the fear of monopoly contributing to changing public attitude.
Food security, nutrition and diet
The environmental effects of different dietary patterns depend on many factors, including the proportion of animal and plant foods consumed and the method of food production. At the same time, current and future food systems need to be provided with sufficient nutrition for not only the current population, but future population growth in light of a world affected by changing climate in the face of global warming.
Nearly one in four households in the United States have experienced food insecurity in 2020–21. Even before the pandemic hit, some 13.7 million households, or 10.5% of all U.S. households, experienced food insecurity at some point during 2019, according to data from the U.S. Department of Agriculture. That works out to more than 35 million Americans who were either unable to acquire enough food to meet their needs, or uncertain of where their next meal might come from, last year.
The "global land squeeze" for agricultural land also has impacts on food security. Likewise, effects of climate change on agriculture can result in lower crop yields and nutritional quality due to for example drought, heat waves and flooding as well as increases in water scarcity, pests and plant diseases. Soil conservation may be important for food security as well. For sustainability and food security, the food system would need to adapt to such current and future problems.
According to one estimate, "just four corporations control 90% of the global grain trade" and researchers have argued that the food system is too fragile due to various issues, such as "massive food producers" (i.e. market-mechanisms) having too much power and nations "polarising into super-importers and super-exporters". However the impact of market power on the food system is contested with other claiming more complex context dependent outcomes.
Production decision-making
In the food industry, especially in agriculture, there has been a rise in problems toward the production of some food products. For instance, growing vegetables and fruits has become more expensive. It is difficult to grow some agricultural crops because some have a preferable climate condition for developing. There has also been an incline on food shortages as production has decreased. Though the world still produces enough food for the population, not everyone receives good quality food because it is not accessible to them, since it depends on their location and/or income. In addition, the number of overweight people has increased, and there are about 2 billion people that are underfed worldwide. This shows how the global food system lacks quantity and quality according to the food consumption patterns.
A study estimated that "relocating current croplands to [environmentally] optimal locations, whilst allowing ecosystems in then-abandoned areas to regenerate, could simultaneously decrease the current carbon, biodiversity, and irrigation water footprint of global crop production by 71%, 87%, and 100%", with relocation only within national borders also having substantial potential.
Policies, including ones that affect consumption, may affect production-decisions such as which foods are produced to various degrees and in various indirect and direct ways. Individual studies have named several proposed options of such and the restricted website Project Drawdown has aggregated and preliminarily evaluated some of these measures.
= Climate change adaptation
=Food waste
According to the Food and Agriculture Organization (FAO), food waste is responsible for 8 percent of global human-made greenhouse gas emissions. The FAO concludes that nearly 30 percent of all available agricultural land in the world – 1.4 billion hectares – is used for produced but uneaten food. The global blue water footprint of food waste is 250 km3, the amount of water that flows annually through the Volga or three times Lake Geneva.
There are several factors that explain how food waste has increased globally in food systems. The main factor is population, because as population increases more food is being made, but most food produced goes to waste. Especially, during COVID-19, food waste grew sharply due to the booming of food delivery services according to a 2022 study. In addition, not all countries have the same resources to provide the best quality of food. According to a study done in 2010, private households produce the largest amounts of food waste across the globe. Another major factor is overproduction; the rate of food production is significantly higher than the rate of consumption, leading to a surplus of food waste.
Throughout the world there are different ways that food is being processed. With different priorities, different choices are being made to meet their most important needs. Money is another big factor that determines how long the process will take and who is working, and it is treated differently in low income countries' food systems.
However, high income countries food systems still may deal with other issues such as food security. This demonstrates how all food systems have their weaknesses and strengths. Climate change causes food waste to increase because the warm temperature causes crops to dry faster and creates a higher risk for fires. Food waste can occur any time throughout production. According to the World Wildlife Organization, since most food produced goes to landfills, when it rots it causes methane to be produced. The disposal of food has a big impact on our environment and health.
Academic Opportunities
The study of sustainable food applies systems theory and methods of sustainable design towards food systems. As an interdisciplinary field, the study of sustainable food systems has been growing in the last several decades. University programs focused on sustainable food systems include:
University of Colorado Boulder
Harvard Extension
University of Delaware
Mesa Community College
University of California, Davis
University of Vermont
Sterling College (Vermont)
University of Michigan
Portland State University
University of Sheffield's Institute for Sustainable Food
University of Georgia's Sustainable Food Systems Initiative
The Culinary Institute of America's Master's in Sustainable Food Systems
University of Edinburgh's Global Academy of Agriculture and Food Systems
There is a debate about "establishing a body akin to the Intergovernmental Panel on Climate Change (IPCC) for food systems" which "would respond to questions from policymakers and produce advice based on a synthesis of the available evidence" while identifying "gaps in the science that need addressing".
Public policy
= European Union
== Global
== Asia
=See also
Standardization#Environmental protection
References
= Cited sources
=Mbow, C.; Rosenzweig, C.; Barioni, L. G.; Benton, T.; et al. (2019). "Chapter 5: Food Security" (PDF). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. p. 454.
Further reading
Kata Kunci Pencarian:
- Pertanian
- Pertanian berkelanjutan
- Pertanian organik
- Fosforit
- Tanaman penutup tanah
- Pertanian urban
- Globalisasi
- Akuaponik
- Permakultur
- Geluh
- Sustainable food system
- Food system
- Sustainable agriculture
- Local food
- Short food supply chains
- Sustainable diet
- Food
- Food security
- Food miles
- Food sovereignty